Sub-process Discovery: Opportunities for Process Diagnostics

  • Raykenler Yzquierdo-Herrera
  • Rogelio Silverio-Castro
  • Manuel Lazo-Cortés
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 139)


Most business processes in real life are not strictly ruled by the information systems that support them. This behavior is reflected in the traces stored by information systems. It is useful to diagnose in early stages of business process analysis. Process diagnostics is part of the process mining and it encompasses process performance analysis, anomaly detection, and inspection of interesting patterns.The techniques developed in this area have problems to detect sub-processes associated with the analyzed process and framing anomalies and significant patterns in the detected sub-processes. This proposal allows to segment the aligned traces and to form representative groups of sub-processes that compose the process analyzed. The tree of building blocks obtained reflects the hierarchical organization that is established between the sub-processes, considering main execution patterns. The proposal allows greater accuracy in the diagnosis. Based on the findings, implications for theory and practice are discussed.


Business process process diagnostics process mining trace alignment 


  1. 1.
    Hendricks, K.B., Singhal, V.R., Stratman, J.K.: The impact of enterprise systems on corporate performance: A study of ERP, SCM, and CRM system implementations. Journal of Operations Management 25(1), 65–82 (2007)CrossRefGoogle Scholar
  2. 2.
    Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow Logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based Data. ACM Transactions on Software Engineering and Methodology, 215–249 (1998)Google Scholar
  4. 4.
    van der Aalst, W.M.P.: Process Mining. Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011)Google Scholar
  5. 5.
    van Dongen, B.F., Adriansyah, A.: Process Mining: Fuzzy Clustering and Performance Visualization. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009 Workshops. LNBIP, vol. 43, pp. 158–169. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: Trace Alignment in Process Mining: Opportunities for Process Diagnostics. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 227–242. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace Clustering in Process Mining. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008 Workshops. LNBIP, vol. 17, pp. 109–120. Springer, Heidelberg (2009)Google Scholar
  8. 8.
    Bose, R.P.J.C., van der Aalst, W.M.P.: Process diagnostics using trace alignment: Opportunities, issues, and challenges. Inf. Syst. 37(2), 117–141 (2012)CrossRefGoogle Scholar
  9. 9.
    Song, M., van der Aalst, W.M.P.: Supporting process mining by showing events at a glance. In: 17th Annual Workshop on Information Technologies and Systems, WITS (2007)Google Scholar
  10. 10.
    Günther, C.W.: Process Mining in Flexible Environments. Eindhoven University of Technology, Eindhoven (2009)Google Scholar
  11. 11.
    Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: Abstractions in process mining: A taxonomy of patterns. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 159–175. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)CrossRefGoogle Scholar
  13. 13.
    Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Towards Robust Conformance Checking. In: zur Muehlen, M., Su, J. (eds.) BPM 2010 Workshops. LNBIP, vol. 66, pp. 122–133. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Aalst, W.M.P.V.D., Rubin, V., Verbeek, H.M.W., Dongen, B.F.V., Kindler, E., Günther, C.W.: ProcessMining: A Two-Step Approach to Balance Between Underfitting and Overfitting. Software and Systems Modeling 9(1), 87–111 (2009)Google Scholar
  15. 15.
    Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining – Adaptive Process Simplification Based on Multi-perspective Metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Weske, M.: Business Process Management. Concepts, Languages, Architectures, Ed. S.-V.B, Heidelberg (2007) Google Scholar
  17. 17.
    González, L., Suárez, M.: Procedure for the application of process mining techniques in auditing processes (Degree). Faculty of Industrial Engineering, Polytechnic Institute José Antonio Echeverría, Havana, Cuba (2012)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Raykenler Yzquierdo-Herrera
    • 1
  • Rogelio Silverio-Castro
    • 1
  • Manuel Lazo-Cortés
    • 1
  1. 1.Faculty 3University of the Informatics SciencesHabanaCuba

Personalised recommendations