Skip to main content

Testing the Lipschitz Property over Product Distributions with Applications to Data Privacy

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 7785)

Abstract

In the past few years, the focus of research in the area of statistical data privacy has been in designing algorithms for various problems which satisfy some rigorous notions of privacy. However, not much effort has gone into designing techniques to computationally verify if a given algorithm satisfies some predefined notion of privacy. In this work, we address the following question: Can we design algorithms which tests if a given algorithm satisfies some specific rigorous notion of privacy (e.g., differential privacy)?

We design algorithms to test privacy guarantees of a given algorithm \(\mathcal{A}\) when run on a dataset x containing potentially sensitive information about the individuals. More formally, we design a computationally efficient algorithm \({\cal T}_{priv}\) that verifies whether \(\mathcal{A}\) satisfies differential privacy on typical datasets (DPTD) guarantee in time sublinear in the size of the domain of the datasets. DPTD, a similar notion to generalized differential privacy first proposed by [3], is a distributional relaxation of the popular notion of differential privacy [14].

To design algorithm \({\cal T}_{priv}\), we show a formal connection between the testing of privacy guarantee for an algorithm and the testing of the Lipschitz property of a related function. More specifically, we show that an efficient algorithm for testing of Lipschitz property can be used as a subroutine in \({\cal T}_{priv}\) that tests if an algorithm satisfies differential privacy on typical datasets.

Apart from formalizing the connection between the testing of privacy guarantee and testing of the Lipschitz property, we generalize the work of [21] to the setting of property testing under product distribution. More precisely, we design an efficient Lipschitz tester for the case where the domain points are drawn from hypercube according to some fixed but unknown product distribution instead of the uniform distribution.

Keywords

  • Product Distribution
  • Repair Operator
  • Property Testing
  • Lipschitz Property
  • Differential Privacy

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

All omitted proofs appear in the full version [8].

References

  1. Awasthi, P., Jha, M., Molinaro, M., Raskhodnikova, S.: Limitations of local filters of lipschitz and monotone functions. In: Gupta, et al.: [18], pp. 374–386

    Google Scholar 

  2. Awasthi, P., Jha, M., Molinaro, M., Raskhodnikova, S.: Testing lipschitz functions on hypergrid domains. In: Gupta, et al.: [18], pp. 387–398

    Google Scholar 

  3. Bhaskar, R., Bhowmick, A., Goyal, V., Laxman, S., Thakurta, A.: Noiseless database privacy. Cryptology ePrint Archive, Report 2011/487 (version: 20120524:110619) (2011), http://eprint.iacr.org/

  4. Bhaskar, R., Bhowmick, A., Goyal, V., Laxman, S., Thakurta, A.: Noiseless Database Privacy. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 215–232. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  5. Bhowmick, A., Dwork, C.: Natural differential privacy. Personal Communication (2012)

    Google Scholar 

  6. Calandrino, J.A., Kilzer, A., Narayanan, A., Felten, E.W., Shmatikov, V.: “you might also like: ” privacy risks of collaborative filtering. In: IEEE Symposium on Security and Privacy, pp. 231–246 (2011)

    Google Scholar 

  7. Chakrabarty, D., Seshadhri, C.: Optimal bounds for monotonicity and lipschitz testing over the hypercube. CoRR abs/1204.0849 (2012)

    Google Scholar 

  8. Dixit, K., Jha, M., Raskhodnikova, S., Thakurta, A.: Testing the lipschitz property over product distributions with applications to data privacy (2013), http://arxiv.org/abs/1209.4056

  9. Dodis, Y., Goldreich, O., Lehman, E., Raskhodnikova, S., Ron, D., Samorodnitsky, A.: Improved Testing Algorithms for Monotonicity. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A. (eds.) RANDOM-APPROX 1999. LNCS, vol. 1671, pp. 97–108. Springer, Heidelberg (1999)

    Google Scholar 

  10. Dwork, C.: Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  11. Dwork, C.: Differential Privacy: A Survey of Results. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  12. Dwork, C.: The Differential Privacy Frontier (Extended Abstract). In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 496–502. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  13. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our Data, Ourselves: Privacy Via Distributed Noise Generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  14. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating Noise to Sensitivity in Private Data Analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  15. Ganta, S.R., Kasiviswanathan, S.P., Smith, A.: Composition attacks and auxiliary information in data privacy. In: KDD, pp. 265–273 (2008)

    Google Scholar 

  16. Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samorodnitsky, A.: Testing monotonicity. Combinatorica 20(3), 301–337 (2000)

    MathSciNet  CrossRef  MATH  Google Scholar 

  17. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. J. ACM 45(4), 653–750 (1998)

    MathSciNet  CrossRef  MATH  Google Scholar 

  18. Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.): APPROX 2012 and RANDOM 2012. LNCS, vol. 7408. Springer, Cambridge (2012)

    MATH  Google Scholar 

  19. Halevy, S., Kushilevitz, E.: Distribution-free property-testing. SIAM J. Comput. 37(4), 1107–1138 (2007)

    MathSciNet  CrossRef  MATH  Google Scholar 

  20. Halevy, S., Kushilevitz, E.: Distribution-free connectivity testing for sparse graphs. Algorithmica 51(1), 24–48 (2008)

    MathSciNet  CrossRef  MATH  Google Scholar 

  21. Jha, M., Raskhodnikova, S.: Testing and reconstruction of lipschitz functions with applications to data privacy. In: Ostrovsky, R. (ed.) FOCS, pp. 433–442. IEEE (2011)

    Google Scholar 

  22. Kasiviswanathan, S.P., Smith, A.: A note on differential privacy: Defining resistance to arbitrary side information. CoRR abs/0803.3946 (2008)

    Google Scholar 

  23. Korolova, A.: Privacy violations using microtargeted ads: A case study. In: ICDMW, pp. 474–482 (2010)

    Google Scholar 

  24. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity: Privacy beyond k-anonymity. In: ICDE, p. 24 (2006)

    Google Scholar 

  25. McSherry, F.D.: Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In: SIGMOD, pp. 19–30 (2009)

    Google Scholar 

  26. Mohan, P., Thakurta, A., Shi, E., Song, D., Culler, D.: Gupt: privacy preserving data analysis made easy. In: SIGMOD, pp. 349–360 (2012)

    Google Scholar 

  27. Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling in private data analysis. In: STOC, pp. 75–84 (2007)

    Google Scholar 

  28. Parnas, M., Ron, D.: Testing the diameter of graphs. Random Struct. Algorithms 20(2), 165–183 (2002)

    MathSciNet  CrossRef  MATH  Google Scholar 

  29. Reed, J., Pierce, B.C.: Distance makes the types grow stronger: a calculus for differential privacy. In: ICFP, pp. 157–168 (2010)

    Google Scholar 

  30. Roy, I., Setty, S.T.V., Kilzer, A., Shmatikov, V., Witchel, E.: Airavat: Security and privacy for mapreduce. In: NSDI, pp. 297–312 (2010)

    Google Scholar 

  31. Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications to program testing. SIAM J. Comput. 25(2), 252–271 (1996)

    MathSciNet  CrossRef  MATH  Google Scholar 

  32. Smith, A.: Privacy-preserving statistical estimation with optimal convergence rates. In: STOC, pp. 813–822 (2011)

    Google Scholar 

  33. Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems 10(5), 557–570 (2002)

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 International Association for Cryptologic Research

About this paper

Cite this paper

Dixit, K., Jha, M., Raskhodnikova, S., Thakurta, A. (2013). Testing the Lipschitz Property over Product Distributions with Applications to Data Privacy. In: Sahai, A. (eds) Theory of Cryptography. TCC 2013. Lecture Notes in Computer Science, vol 7785. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36594-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36594-2_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36593-5

  • Online ISBN: 978-3-642-36594-2

  • eBook Packages: Computer ScienceComputer Science (R0)