Skip to main content

Characterizing the Cryptographic Properties of Reactive 2-Party Functionalities

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 7785)

Abstract

In secure multi-party computation, a reactive functionality is one which maintains persistent state, takes inputs, and gives outputs over many rounds of interaction with its parties. Reactive functionalities are fundamental and model many interesting and natural cryptographic tasks; yet their security properties are not nearly as well-understood as in the non-reactive case (known as secure function evaluation).

We present new combinatorial characterizations for 2-party reactive functionalities, which we model as finite automata. We characterize the functionalities that have passive-secure protocols, and those which are complete with respect to passive adversaries. Both characterizations are in the information-theoretic setting.

References

  1. Beaver, D.: Perfect privacy for two-party protocols. In: Feigenbaum, J., Merritt, M. (eds.) Proceedings of DIMACS Workshop on Distributed Computing and Cryptography, vol. 2, pp. 65–77. American Mathematical Society (1989)

    Google Scholar 

  2. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: Naor, M. (ed.) FOCS, pp. 136–145. IEEE Computer Society Press (2001); Revised version (2005) on Cryptology ePrint Archive, http://eprint.iacr.org/2000/067

  3. Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  4. Chor, B., Kushilevitz, E.: A zero-one law for boolean privacy. SIAM J. Discrete Math. 4(1), 36–47 (1991)

    MathSciNet  CrossRef  MATH  Google Scholar 

  5. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM (1987)

    Google Scholar 

  6. Kilian, J.: A general completeness theorem for two-party games. In: STOC, pp. 553–560. ACM (1991)

    Google Scholar 

  7. Kilian, J.: More general completeness theorems for secure two-party computation. In: STOC, pp. 316–324. ACM (2000)

    Google Scholar 

  8. Kilian, J., Kushilevitz, E., Micali, S., Ostrovsky, R.: Reducibility and completeness in private computations. SIAM J. Comput. 29(4), 1189–1208 (2000)

    MathSciNet  CrossRef  MATH  Google Scholar 

  9. Kraschewski, D., Müller-Quade, J.: Completeness Theorems with Constructive Proofs for Finite Deterministic 2-Party Functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 364–381. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  10. Kreitz, G.: A Zero-One Law for Secure Multi-party Computation with Ternary Outputs. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 382–399. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  11. Künzler, R., Müller-Quade, J., Raub, D.: Secure Computability of Functions in the IT Setting with Dishonest Majority and Applications to Long-Term Security. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 238–255. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  12. Kushilevitz, E.: Privacy and communication complexity. In: FOCS, pp. 416–421. IEEE (1989)

    Google Scholar 

  13. Maji, H.K., Prabhakaran, M., Rosulek, M.: Complexity of Multi-party Computation Problems: The Case of 2-Party Symmetric Secure Function Evaluation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 256–273. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  14. Maji, H.K., Prabhakaran, M., Rosulek, M.: A Zero-One Law for Cryptographic Complexity with Respect to Computational UC Security. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 595–612. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  15. Prabhakaran, M., Rosulek, M.: Cryptographic Complexity of Multi-Party Computation Problems: Classifications and Separations. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 262–279. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  16. Rosulek, M.: Universal Composability from Essentially Any Trusted Setup. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 406–423. Springer, Heidelberg (2012)

    Google Scholar 

  17. Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS, pp. 160–164. IEEE (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 International Association for Cryptologic Research

About this paper

Cite this paper

Jeffs, R.A., Rosulek, M. (2013). Characterizing the Cryptographic Properties of Reactive 2-Party Functionalities. In: Sahai, A. (eds) Theory of Cryptography. TCC 2013. Lecture Notes in Computer Science, vol 7785. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36594-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36594-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36593-5

  • Online ISBN: 978-3-642-36594-2

  • eBook Packages: Computer ScienceComputer Science (R0)