Advertisement

Signatures of Correct Computation

  • Charalampos Papamanthou
  • Elaine Shi
  • Roberto Tamassia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7785)

Abstract

We introduce Signatures of Correct Computation (SCC), a new model for verifying dynamic computations in cloud settings. In the SCC model, a trusted source outsources a function f to an untrusted server, along with a public key for that function (to be used during verification). The server can then produce a succinct signature σ vouching for the correctness of the computation of f, i.e., that some result v is indeed the correct outcome of the function f evaluated on some point a. There are two crucial performance properties that we want to guarantee in an SCC construction: (1) verifying the signature should take asymptotically less time than evaluating the function f; and (2) the public key should be efficiently updated whenever the function changes.

We construct SCC schemes (satisfying the above two properties) supporting expressive manipulations over multivariate polynomials, such as polynomial evaluation and differentiation. Our constructions are adaptively secure in the random oracle model and achieve optimal updates, i.e., the function’s public key can be updated in time proportional to the number of updated coefficients, without performing a linear-time computation (in the size of the polynomial).

We also show that signatures of correct computation imply Publicly Verifiable Computation (PVC), a model recently introduced in several concurrent and independent works. Roughly speaking, in the SCC model, any client can verify the signature σ and be convinced of some computation result, whereas in the PVC model only the client that issued a query (or anyone who trusts this client) can verify that the server returned a valid signature (proof) for the answer to the query. Our techniques can be readily adapted to construct PVC schemes with adaptive security, efficient updates and without the random oracle model.

Keywords

Random Oracle Correct Computation Random Oracle Model Polynomial Evaluation Algorithm Verify 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: From Secrecy to Soundness: Efficient Verification via Secure Computation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 152–163. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Atallah, M.J., Cho, Y., Kundu, A.: Efficient data authentication in an environment of untrusted third-party distributors. In: ICDE, pp. 696–704 (2008)Google Scholar
  3. 3.
    Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable Delegation of Computation over Large Datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: ITCS, pp. 326–349 (2012)Google Scholar
  5. 5.
    Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for snarks and proof-carrying data. IACR Cryptology ePrint Archive 2012:95 (2012)Google Scholar
  6. 6.
    Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Boneh, D., Boyen, X.: Efficient selective identity-based encryption without random oracles. J. Cryptology 24(4), 659–693 (2011)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Boneh, D., Waters, B.: Conjunctive, Subset, and Range Queries on Encrypted Data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Canetti, R., Riva, B., Rothblum, G.N.: Two 1-round protocols for delegation of computation. IACR Cryptology ePrint Archive 2011:518 (2011)Google Scholar
  10. 10.
    Chung, K.-M., Kalai, Y., Vadhan, S.: Improved Delegation of Computation Using Fully Homomorphic Encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 483–501. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Damgård, I.B.: Towards Practical Public Key Systems Secure against Chosen Ciphertext Attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992)Google Scholar
  12. 12.
    Fiore, D., Gennaro, R.: Improved publicly verifiable delegation of large polynomials and matrix computations. IACR Cryptology ePrint Archive 2012:434 (2012)Google Scholar
  13. 13.
    Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and matrix computations, with applications. In: CCS, pp. 501–512 (2012)Google Scholar
  14. 14.
    Gennaro, R., Gentry, C., Parno, B.: Non-interactive Verifiable Computing: Outsourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. IACR Cryptology ePrint Archive 2012:215 (2012)Google Scholar
  16. 16.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)Google Scholar
  17. 17.
    Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: STOC, pp. 99–108 (2011)Google Scholar
  18. 18.
    Goodrich, M.T., Tamassia, R., Schwerin, A.: Implementation of an authenticated dictionary with skip lists and commutative hashing. In: DISCEX II, pp. 68–82 (2001)Google Scholar
  19. 19.
    Goodrich, M.T., Tamassia, R., Triandopoulos, N.: Super-Efficient Verification of Dynamic Outsourced Databases. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 407–424. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Goodrich, M.T., Tamassia, R., Triandopoulos, N.: Efficient authenticated data structures for graph connectivity and geometric search problems. Algorithmica 60(3), 505–552 (2011)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded Ciphertext Policy Attribute Based Encryption. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 579–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Groth, J.: Short Non-interactive Zero-Knowledge Proofs. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 341–358. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-Size Commitments to Polynomials and Their Applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Lewko, A., Waters, B.: New Proof Methods for Attribute-Based Encryption: Achieving Full Security through Selective Techniques. In: Safavi-Naini, R. (ed.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)Google Scholar
  25. 25.
    Yiu, M.L., Lin, Y., Mouratidis, K.: Efficient verification of shortest path search via authenticated hints. In: ICDE, pp. 237–248 (2010)Google Scholar
  26. 26.
    Merkle, R.C.: A Certified Digital Signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)Google Scholar
  27. 27.
    Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298 (2000)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. IACR Cryptology ePrint Archive 2011: 587 (2011)Google Scholar
  29. 29.
    Papamanthou, C., Tamassia, R., Triandopoulos, N.: Authenticated hash tables. In: CCS, pp. 437–448 (2008)Google Scholar
  30. 30.
    Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal Verification of Operations on Dynamic Sets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 91–110. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  31. 31.
    Parno, B., Raykova, M., Vaikuntanathan, V.: How to Delegate and Verify in Public: Verifiable Computation from Attribute-Based Encryption. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  32. 32.
    Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  33. 33.
    Tamassia, R.: Authenticated Data Structures. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 2–5. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  34. 34.
    Tamassia, R., Triandopoulos, N.: Efficient Content Authentication in Peer-to-Peer Networks. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 354–372. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  35. 35.
    Tamassia, R., Triandopoulos, N.: Certification and authentication of data structures. In: Proc. Alberto Mendelzon Workshop on Foundations of Data Management (2010)Google Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  • Charalampos Papamanthou
    • 1
  • Elaine Shi
    • 2
  • Roberto Tamassia
    • 3
  1. 1.UC BerkeleyUSA
  2. 2.University of MarylandUSA
  3. 3.Brown UniversityUSA

Personalised recommendations