Skip to main content

Polysaccharide Hydrogels: Synthesis, Characterization, and Applications

  • Chapter
  • First Online:
Polysaccharide Based Graft Copolymers

Abstract

This chapter deals with the review on natural backbone-based superabsorbent hydrogels and their classification based upon method of preparation, monomer type, and ionic charge. The applications of hydrogels in different fields like biomedical, pharmaceuticals, agriculture, metal ion sorption, etc., have been discussed in this chapter. The polysaccharide-based hydrogels are eco-friendly, cost effective, biodegradable, and biocompatible in nature. They can be characterized by different techniques like FTIR, SEM, XRD, AFM, TGA, DTA, DTG, and DSC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118

    Article  Google Scholar 

  2. Krejci L, Harrison R, Wichterle O (1970) Hydroxyethyl methacrylate capillary strip animal trials with a new glaucoma drainage device. Arch Ophthal 84:76–82

    Article  CAS  Google Scholar 

  3. Kaith BS, Jindal R, Mittal H (2010) Superabsorbent hydrogels from poly(acrylamide-co-acrylonitrile) grafted Gum ghatti with salt, pH and temperature responsive properties. Der Chemica Sinica 1:92–103

    CAS  Google Scholar 

  4. Kaith BS, Ranjta S (2010) Synthesis of pH—thermosensitive gum arabic based hydrogel and study of its salt-resistant swelling behavior for saline water treatment. Desalin Water Treat 24:28–37

    Article  CAS  Google Scholar 

  5. Jamnongkan T, Kaewpirom S (2010) Controlled-release fertilizer based on chitosan hydrogel: phosphorus release kinetics. Sci J UBU 1:43–50

    Google Scholar 

  6. Leonardis M, Palange A, Dornelles RF, Hund F (2010) Use of cross-linked carboxymethyl cellulose for soft-tissue augmentation: preliminary clinical studies. Clin Interv Aging 5:317–322

    Article  CAS  Google Scholar 

  7. Liu J, Lin S, Li L, Liu E (2005) Release of theophylline from polymer blend hydrogels. Int J Pharm 298:117–125

    Article  CAS  Google Scholar 

  8. Bajpai AK, Shrivastava J (2005) In vitro enzymatic degradation kinetics of polymeric blends of crosslinked starch and carboxymethyl cellulose. Polym Int 54:1524–1536

    Article  CAS  Google Scholar 

  9. Gupta D, Tator CH, Shoichet MS (2006) Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials 27:2370–2379

    Article  CAS  Google Scholar 

  10. Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21:2155–2161

    Article  CAS  Google Scholar 

  11. Gao C, Liu M, Chen J, Zhang X (2009) Preparation and controlled degradation of oxidized sodium alginate hydrogel. Polym Deg Stab 94:1405–1410

    Article  CAS  Google Scholar 

  12. Mittal H, Kaith BS, Jindal R (2010) Microwave radiation induced synthesis of gum ghatti and acrylamide based crosslinked network and evaluation of its thermal and electrical behavior. Der Chemica Sinica 1:59–69

    CAS  Google Scholar 

  13. Zhou J, Chang C, Zhang R, Zhang L (2007) Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. Macromol Biosci 7:804–809

    Article  CAS  Google Scholar 

  14. Phillips GO, Du Plessis TA, Al-Assaf S, Williams PA (2005) Biopolymers obtained by solid state irradiation in an unsaturated gaseous atmosphere. US Patent 6841644

    Google Scholar 

  15. Hirsch SG, Spontak RJ (2002) Temperature-dependent property development in hydrogels derived from hydroxypropyl cellulose. Polymer 43:123–129

    Article  CAS  Google Scholar 

  16. Mitsumata T, Suemitsu Y, Fujii K, Fujii T, Taniguchi T, Koyama K (2003) pH-Response of chitosan, κ-carrageenan, carboxymethyl cellulose sodium salt complex hydrogels. Polymer 44:7103–7111

    Article  CAS  Google Scholar 

  17. Choudhary S, White JC, Stoppel WL, Roberts SC, Bhatia SR (2011) Gelation behavior of polysaccharide-based interpenetrating polymer network (IPN) hydrogels. Rheol Acta 50:39–52

    Article  CAS  Google Scholar 

  18. Khalid MN, Ho L, Agnely F, Grossiord JL, Couarraze G (1999) Swelling properties and mechanical characterization of a semi-interpenetrating chitosan/polyethylene oxide network—comparison with a chitosan reference gel. Stp Pharm Sci 9:359–364

    CAS  Google Scholar 

  19. Ng LT, Swami S (2005) IPNs based on chitosan with NVP and NVP/HEMA synthesised through photoinitiator-free photopolymerisation technique for biomedical applications. Carbohydr Polym 60:523–528

    Article  CAS  Google Scholar 

  20. Ostroha J, Pong M, Lowman A, Dan N (2004) Controlling the collapse/swelling transition in charged hydrogels. Biomaterials 25:4345–4353

    Article  CAS  Google Scholar 

  21. Hariharan MTA, Peppas NA (1995) Factors influencing drug and protein transport and release from ionic hydrogels. React Polym 25:127–137

    Article  Google Scholar 

  22. Gupta KC, Kumar MNVR (2000) Semi-interpenetrating polymer network beads of crosslinked chitosan–glycine for controlled release of chlorphenamine maleate. J Appl Polym Sci 76:672–683

    Article  CAS  Google Scholar 

  23. Funami T, Hiroe M, Noda S, Asai I, Ikeda S, Nishimari K (2007) Influence of molecular structure imaged with atomic force microscopy on the rheological behavior of carrageenan aqueous systems in the presence or absence of cations. Food Hydrocolloids 21:617–629

    Article  CAS  Google Scholar 

  24. Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33:1088–1118

    Article  CAS  Google Scholar 

  25. Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang M (2005) PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Control Release 103:609–624

    Article  CAS  Google Scholar 

  26. Pongjanyakul T, Puttipipatkhachorn S (2007) Xanthan–alginate composite gel beads: molecular interaction and in vitro characterization. Int J Pharm 331:61–71

    Article  CAS  Google Scholar 

  27. Giannouli P, Morris ER (2003) Cryogelation of xanthan. Food Hydrocolloids 17:495–501

    Article  CAS  Google Scholar 

  28. De Jong SJ, De Smedt SC, Wahls MWC, Demeester J, K-van den Bosch JJ, Hennink WE (2000) Novel self-assembled hydrogels by stereocomplex formation in aqueous solution of enantiomeric lactic acid oligomers grafted to dextran. Macromolecules 33:3680–3686

    Article  Google Scholar 

  29. Eiselt P, Lee KY, Mooney DJ (1999) Rigidity of two-component hydrogels prepared from alginate and poly(ethylene glycol)-diamines. Macromolecules 32:5561–5566

    Article  CAS  Google Scholar 

  30. Cai S, Liu Y, Shu XZ, Prestwich GD (2005) Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials 26:6054–6067

    Article  CAS  Google Scholar 

  31. Motokawa K, Hahn SK, Nakamura T, Miyamoto H, Shimoboji T (2006) Selectively crosslinked hyaluronic acid hydrogels for sustained release formulation of erythropoietin. J Biomed Mat Res Part A 79:459–465

    Article  Google Scholar 

  32. Kurisawa M, Chung JE, Yang YY, Gao SJ, Uyama H (2005) Injectable biodegradable hydrogels composed of hyaluronic acid–tyramine conjugates for drug delivery and tissue engineering. Chem Commun 34:4312–4314

    Article  Google Scholar 

  33. Sannino A, Esposito A, De Rosa A, Cozzolino A, Ambrosio L, Nicolais L (2003) Biomedical application of a superabsorbent hydrogel for body water elimination in the treatment of edemas. J Biomed Mater Res A 67:1016–1024

    Article  CAS  Google Scholar 

  34. Niu C, Wu W, Wang Z, Li S, Wang J (2007) Adsorption of heavy metal ions from aqueous solution by crosslinked carboxymethyl konjac glucomannan. J Hazard Mater 141:209–214

    Article  CAS  Google Scholar 

  35. Pitarresi G, Palumbo FS, Tripodo G, Cavallaro G, Giammona G (2007) Preparation and characterization of new hydrogels based on hyaluronic acid and α,β-polyaspartylhydrazide. Eur Polym J 43:3953–3962

    Article  CAS  Google Scholar 

  36. Kumar K, Kaith BS, Jindal R, Mittal H (2012) Gamma-radiation initiated synthesis of psyllium and acrylic acid based polymeric networks for selective absorption of water from different oil-water emulsions. J Appl Polym Sci 124:4969–4977

    CAS  Google Scholar 

  37. Fei B, Wach RA, Mitomo H, Yoshii F, Kume T (2000) Hydrogel of biodegradable cellulose derivatives I radiation-induced crosslinking of CMC. J Appl Polym Sci 78:278–283

    Article  CAS  Google Scholar 

  38. Hiroki A, Tran HT, Nagasawa N, Yagi T, Tamada M (2009) Metal adsorption of carboxymethyl cellulose/carboxymethyl chitosan blend hydrogels prepared by gamma irradiation. Radiat Phys Chem 78:1076–1080

    Article  CAS  Google Scholar 

  39. Al-Assaf S, Phillips GO, Williams PA, Plessis TA (2007) Application of ionizing radiations to produce new polysaccharides and proteins with enhanced functionality. Nucl Inst Meth Phys Res B 265:37–43

    Article  CAS  Google Scholar 

  40. Kaith BS, Sharma S, Jindal R, Bhatti MS (2011) Screening and RSM optimization for synthesis of gum tragacanth-acrylic acid based device for in-situ controlled cetirizine dihydrochloride release. Soft Mat 8:2286–2293

    Google Scholar 

  41. Kumari A, Kaith BS, Singha AS, Kalia S (2010) Synthesis, characterization and salt resistant swelling behavior of Psy-g-poly(AA) hydrogel. Adv Mat Let 1:123–128

    Article  CAS  Google Scholar 

  42. Mittal H, Kaith BS, Jindal R (2010) Synthesis, characterization and swelling behaviour of poly(acrylamide-co-methacrylic acid) grafted Gum ghatti based superabsorbent hydrogels. Adv Appl Sci Res 1:56–66

    CAS  Google Scholar 

  43. Kaith BS, Kumar K (2007) Preparation of psyllium based hydrogels and their application in oil sector. Iran Polym J 16:529–538

    CAS  Google Scholar 

  44. Kumar K, Kaith BS, Jindal R, Mittal H (2012) Gamma-radiation initiated synthesis of psyllium and acrylic acid-based polymeric networks for selective absorption of water from different oil–water emulsions. J Appl Polym Sci 124:4969–4977

    CAS  Google Scholar 

  45. Kaith BS, Jindal R, Mittal H, Kumar K (2010) Temperature, pH and electric stimulus responsive hydrogels from Gum ghatti and polyacrylamide-synthesis, characterization and swelling studies. Der Chemica Sinica 1:44–54

    CAS  Google Scholar 

  46. Wang JP, Chen YZ, Zhang SJ, Yu HQ (2008) A chitosan-based flocculant prepared with gamma-irradiation-induced grafting. Biores Tech 99:3397–3402

    Article  CAS  Google Scholar 

  47. Said HM, Alla SGA, El-Naggar AWM (2004) Synthesis and characterization of novel gels based on carboxymethyl cellulose/acrylic acid prepared by electron beam irradiation. React Funct Polym 61:397–404

    Article  CAS  Google Scholar 

  48. Kaith BS, Jindal R, Mittal H, Kumar K (2011) Synthesis, characterization, and swelling behavior evaluation of hydrogels based on gum ghatti and acrylamide for selective absorption of saline from different petroleum fraction–saline emulsions. J Appl Polym Sci 124:2037–2047

    Article  Google Scholar 

  49. Donald AM (2003) The use of environmental scanning electron microscopy for imaging wet and insulating materials. Nat Mat 2:511–516

    Article  CAS  Google Scholar 

  50. Ferreiraa L, Gila MH, Cabrita AMS, Dordick JS (2005) Biocatalytic synthesis of highly ordered degradable dextran-based hydrogels. Biomaterials 26:4707–4716

    Article  Google Scholar 

  51. Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373

    Article  CAS  Google Scholar 

  52. Chen LG, Liu ZL, Zhuo RX (2005) Synthesis and properties of degradable hydrogels of konjac glucomannan grafted acrylic acid for colon-specific drug delivery. Polymer 46:6274–6281

    Article  CAS  Google Scholar 

  53. Kumar K, Kaith BS, Mittal H (2012) A study on effect of different reaction conditions on grafting of psyllium and acrylic acid-based hydrogels. J Appl Polym Sci 123:1874–1883

    Article  CAS  Google Scholar 

  54. Weisenhorn AL, Khorsandi M, Kasas S, Gotzos V, Butt HJ (1993) Deformation and height anomaly of soft surfaces studied with an AFM. Nanotechnology 4:106–113

    Article  CAS  Google Scholar 

  55. Kaith BS, Kumar K (2007) Selective absorption of water from different oil–water emulsions with Psy-cl-poly(AAm) synthesized using irradiation copolymerization method B. Bull Mater Sci 30:387–391

    Article  CAS  Google Scholar 

  56. Kaith BS, Kumar K (2007) In air synthesis of Psy-cl-poly(AAm) network and its application in water-absorption from oil-water emulsions. eXPRESS Polym Let 1:474–480

    Article  CAS  Google Scholar 

  57. Kaith BS, Ranjita S, Kumar K (2008) In air synthesis of GA-cl-poly(MAA) hydrogel and study of its salt- resistant swelling behavior in different salts. e-Polymers 158

    Google Scholar 

  58. Kaith BS, Jindal R, Mittal H, Kumar K, Nagla KS (2010) Synthesis and characterization of Gum ghatti based electrosensitive smart networks. Trends Carbohydr Res 2:35–44

    CAS  Google Scholar 

  59. Draget KI, Skjak-Braek G, Smidsrd O (1997) Alginate based new materials. Int J Biol Macromol 21:47–55

    Article  CAS  Google Scholar 

  60. Kuo CK, Ma PX (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part I Structure, gelation rate and mechanical properties. Biomaterials 22:511–21

    Article  CAS  Google Scholar 

  61. Rowley JA, Mooney DJ (2002) Alginate type and RGD density control myoblast phenotype. J Biomed Mater Res 60:217–23

    Article  CAS  Google Scholar 

  62. Drurya JL, Dennis RG, Mooney DJ (2004) The tensile properties of alginate hydrogels. Biomaterials 25:3187–3199

    Article  Google Scholar 

  63. Sandolo C, Matricardi P, Alhaique F, Coviello T (2007) Dynamo-mechanical and rheological characterization of guar gum hydrogels. Eur Polym J 43:3355–3367

    Article  CAS  Google Scholar 

  64. Kaith BS, Kiran K (2007) In vacuum preparation of Psy-cl-Poly(AAm) super-absorbent and its applications in oil-industry. e-Polymers 002.

    Google Scholar 

  65. Kaith BS, Kiran K (2008) In vacuum synthesis of psyllium and acrylic acid based hydrogels for selective water absorption from different oil-water emulsions. Desalination 229:331–341

    Article  CAS  Google Scholar 

  66. El-Hag Ali A, Abd El-Rehim H, Kamal H, Hegazy DES (2008) Synthesis of carboxymethyl cellulose based drug carrier hydrogel using ionizing radiation for possible use as site specific delivery system. J Macromol Sci A 45:628–634

    CAS  Google Scholar 

  67. Davaran S, Rashidi MR, Khani A (2007) Synthesis of chemically cross-linked hydroxypropyl methyl cellulose hydrogels and their application in controlled release of 5-amino salicylic acid. Drug Dev Ind Pharm 33:881–887

    Article  CAS  Google Scholar 

  68. Hovgaard L, Brndsted H (1995) Controlled release dextran hydrogels for colon-specific drug delivery. J Control Release 36:159–166

    Article  CAS  Google Scholar 

  69. Kulkarni RV, Sa B (2008) Evaluation of pH-sensitivity and drug release characteristics of (polyacrylamide-grafted-xanthan)-carboxymethyl cellulose-based pH-sensitive interpenetrating network hydrogel beads. Drug Dev Ind Pharm 34:1406–1414

    Article  CAS  Google Scholar 

  70. Baumgartner S, Kristl J, Peppas NA (2002) Network structure of cellulose ethers used in pharmaceutical applications during swelling and at equilibrium. Pharm Res 19:1084–1090

    Article  CAS  Google Scholar 

  71. Don TM, Huang ML, Chiu AC, Kuo KH, Chiu WY, Chiu LH (2008) Preparation of thermo-responsive acrylic hydrogels useful for the application in transdermal drug delivery systems. Mater Chem Phys 107:266–273

    Article  CAS  Google Scholar 

  72. Kumar G, Juyal V, Badoni PP, Rawat MSM, Semalty A (2009) Formulation and release kinetic study of hydrogel containing acarbose using polymers as hydroxypropylmethyl cellulose and guar gum. J Pharm Res 2:370–374

    CAS  Google Scholar 

  73. Kajjari PB, Manjeshwar LS, Aminabhavi TM (2011) Semi-interpenetrating polymer network hydrogel blend microspheres of gelatin and hydroxyethyl cellulose for controlled release of theophylline. Ind Eng Chem Res l50:7833–7840

    Article  Google Scholar 

  74. Anders R, Merkle HP (1989) Evaluation of laminated mucoadhesive patches for buccal drug delivery. Int J Pharm 49:231–240

    Article  CAS  Google Scholar 

  75. Cerchiara T, Luppi B, Bigucci F, Zecchi V (2003) Chitosan salts as nasal sustained delivery systems for peptidic drugs. J Pharm Pharmacol 55:1623–1627

    Article  CAS  Google Scholar 

  76. Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34

    Article  CAS  Google Scholar 

  77. Braga MEM, Pato MTV, Silva HSRC, Ferreira EI, Gil MH, Duarte CMM, de Sousa HC (2008) Supercritical solvent impregnation of ophthalmic drugs on chitosan derivatives. J Supercrit Fluids 44:245–257

    Article  CAS  Google Scholar 

  78. Schaffhausen N, Tijsma E, Hissong B (2008) Injectable chitosan-based hydrogels for drug delivery after ear–nose–throat surgery. J Control Release 132:e47–e48

    Article  CAS  Google Scholar 

  79. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329

    Article  CAS  Google Scholar 

  80. Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6:623–633

    Article  CAS  Google Scholar 

  81. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    Article  CAS  Google Scholar 

  82. Tiwari A, Grailer JJ, Pilla S, Steeber DA, Gong S (2009) Biodegradable hydrogels based on novel photopolymerizable guar gum–methacrylate macromonomers for in situ fabrication of tissue engineering scaffolds. Acta Biomater 5:3441–3452

    Article  CAS  Google Scholar 

  83. Hu J, Hou Y, Park H, Choi B, Hou S, Chung A, Lee M (2012) Visible light crosslinkable chitosan hydrogels for tissue engineering. Acta Biomater 8:1730–1738

    Article  CAS  Google Scholar 

  84. Jin R, Teixeira LSM, Dijkstra PJ, Blitterswijk CAV, Karperien M, Feijen J (2010) Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran–hyaluronic acid conjugates for cartilage tissue engineering. Biomaterials 31:3103–3113

    Article  CAS  Google Scholar 

  85. Jayakumar R, Prabaharan M, Kumar PTS, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotech Adv 29:322–337

    Article  CAS  Google Scholar 

  86. Sikareepaisan P, Ruktanonchai U, Supaphol P (2011) Preparation and characterization of asiaticoside-loaded alginate films and their potential for use as effectual wound dressings. Carbohydr Polym 83:1457–1469

    Article  CAS  Google Scholar 

  87. Balakrishnan B, Mohanty M, Umashankar PR, Jayakrishnan A (2005) Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatine. Biomaterials 26:6335–6342

    Article  CAS  Google Scholar 

  88. Kiran K, Kaith BS (2010) Psyllium and acrylic acid based polymeric net-works synthesized under the influence of γ-radiations for sustained release of fungicide. Fibres Polym 11:147–152

    Article  Google Scholar 

  89. Aouada FA, de Moura MR, Henrique L, Mattoso C (2011) Biodegradable hydrogel as delivery vehicle for the controlled release of pesticide. In: Stoytcheva M (ed) Pesticides—formulations, effects, fate. CC BY-NC-SA

    Google Scholar 

  90. Singh B, Sharma DK, Kumar R, Gupta A (2009) Controlled release of the fungicide thiram from starch–alginate–clay based formulation. Appl Clay Sci 45:76–82

    Article  CAS  Google Scholar 

  91. Roy A, Bajpai J, Bajpai AK (2009) Dynamics of controlled release of chlorpyrifos from swelling and eroding biopolymeric microspheres of calcium alginate and starch. Carbohydr Polym 76:222–231

    Article  CAS  Google Scholar 

  92. Abd El-Mohdy HL, Hegazy EA, El-Nesr EM, El-Wahab MA (2011) Control release of some pesticides from starch/(ethylene glycol-co-methacrylic acid) copolymers prepared by γ-irradiation. J Appl Polym Sci 122:1500–1509

    Article  CAS  Google Scholar 

  93. Singh B, Chauhan GS, Bhatt SS, Kumar K (2006) Metal ion sorption and swelling studies of psyllium and acrylic acid based hydrogels. Carbohydr Polym 64:50–56

    Article  CAS  Google Scholar 

  94. Chauhan GS, Singh BS, Chauhan S, Verma M, Mahajan S (2005) Sorption of some metal ions on cellulosic-based hydrogels. Desalination 181:217–224

    Article  CAS  Google Scholar 

  95. Nizam El-Din HM, Abou Taleb MF, Abdel Wahab AM, El-Naggar AM (2008) Metal sorption and swelling characters of acrylic acid and sodium alginate based hydrogels synthesized by gamma irradiation. Nucl Inst Meth Phys Res B Beam 266:2607–2613

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balbir Singh Kaith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhatia, J.K., Kaith, B.S., Kalia, S. (2013). Polysaccharide Hydrogels: Synthesis, Characterization, and Applications. In: Kalia, S., Sabaa, M. (eds) Polysaccharide Based Graft Copolymers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36566-9_7

Download citation

Publish with us

Policies and ethics