Skip to main content

Polymer Grafting: A Versatile Means to Modify the Polysaccharides

  • Chapter
  • First Online:
Polysaccharide Based Graft Copolymers

Abstract

The polysaccharides are the most abundant natural organic materials, and polysaccharide-based graft copolymers are of great importance and widely used in the various fields. Natural polysaccharides have received more attention due to their advantages over the synthetic polymers such as non-toxic, biodegradable and low cost. Modification of polysaccharides through graft copolymerisation improves the properties of natural polysaccharides. Grafting is known to improve the characteristic properties of the backbones. Such properties include water repellency, thermal stability, flame resistance, dye ability and resistance towards acid–base attack and abrasion. Graft copolymers play an important role as reinforcing agents in the preparation of green composites. These graft copolymers on subjecting both for composting and soil burial biodegradation studies are found to be biodegradable in nature. Polysaccharides and their graft copolymers find extensive applications in diversified fields. Applications of modified polysaccharides include drug delivery devices, controlled release of fungicides, selective water absorption from oil–water emulsions and purification of water. Methods for the modification of various polysaccharides through graft copolymerisation technique have been reported in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ito M, Nagai K (2007) Degradation behaviour and application of recycled PVC sheet made of floor sheet for railway vehicle. Polym Degrad Stab 92:1692–1699

    Article  CAS  Google Scholar 

  2. Makohliso SA, Giovangrandi L, Leonard D, Mathieu HJ, Ilegems M, Aebischer P (1998) Application of teflon thin films for bio-patterning of neural cell adhesion. Biosens Bioelectron 13:1227–1235

    Article  CAS  Google Scholar 

  3. Gao C, Yan D (2004) Hyperbranched polymers: from synthesis to applications. Prog Polym Sci 29:183–275

    Article  CAS  Google Scholar 

  4. Chan HS, Ng SC (1998) Synthesis, characterization and applications of thiophene-based functional polymers. Prog Polym Sci 23:1167–1231

    Article  CAS  Google Scholar 

  5. Goddard JM, Hotchkiss JH (2007) Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci 32:698–725

    Article  CAS  Google Scholar 

  6. Reisinger JJ, Hllmyer MA (2002) Synthesis of fluorinated polymers by chemical modification. Prog Polym Sci 27:971–1005

    Article  CAS  Google Scholar 

  7. Marcincin A (2002) Modification of fibre forming polymers by additives. Prog Polym Sci 27:853–913

    Article  CAS  Google Scholar 

  8. Muth O, Hirth T, Vogel H (2000) Polymer modification by supercritical impregnation. J Supercrit Fluids 17:65–72

    Article  CAS  Google Scholar 

  9. Lv J, Ma J, HuangFu P, Yang S, Gong Y (2008) Surface modification with both phosphorylcholine and stearyl groups to adjust hydrophilicity and hydrophobicity. Appl Surf Sci 255:498–501

    Article  CAS  Google Scholar 

  10. Kalia S, Kaith BS (2008) Mechanical properties of phenolic composites reinforced with flax-g-copolymers prepared under different reaction conditions—a comparative study. E-J Chem 5:177–184

    Article  Google Scholar 

  11. Fares MM, El-faqeeh AS, Osman ME (2003) Graft copolymerization onto starch–I. Synthesis and optimization of starch grafted with N-tert-butylacrylamide copolymer and its hydrogels. J Polym Res 10:119–125

    Article  CAS  Google Scholar 

  12. Moreira ACE, Oliveira MG, Soares BG (1997) Thermal degradation studies of poly(EVAL-g-methylmethacrylate). Polym Degrad Stab 58:181–185

    Article  CAS  Google Scholar 

  13. Kaith BS, Kalia S (2008) A study of crystallinity of graft copolymers of flax fiber with binary vinyl monomers. E-Polymers 2:1–6

    Google Scholar 

  14. Meshram MW, Patil VV, Mhaske ST, Thorat BN (2009) Graft copolymers of starch and its application in textiles. Carbohydr Polym 75:71–78

    Article  CAS  Google Scholar 

  15. Kaith BS, Singha AS, Kumar S, Kalia S (2008) Mercerization of flax fiber improves the mechanical properties of fiber- reinforced composites. Int J Polym Mater 57:54–72

    Article  CAS  Google Scholar 

  16. Dhiman PK, Kaur I, Mahajan RK (2008) Synthesis of a cellulose-grafted polymeric support and Its application in the reductions of some carbonyl compounds. J Appl Polym Sci 108:99–111

    Article  CAS  Google Scholar 

  17. El-Sherbiny IM (2009) Synthesis, characterization and metal uptake capacity of a new carboxymethyl chitosan derivative. Eur Polym J 45:199–210

    Article  CAS  Google Scholar 

  18. Wibowo AC, Desai SM, Mohanty AK, Drzal LT, Misra M (2006) A solvent free graft copolymerization of maleic anhydride onto cellulose acetate butyrate bioplastic by reactive extrusion. Macromol Mater Eng 291:90–95

    Article  CAS  Google Scholar 

  19. Kalia S, Kaith BS, Sharma S, Bhardwaj B (2008) Mechanical properties of flax-g-poly(methyl acrylate) reinforced phenolic composites. Fiber Polym 9:416–422

    Article  CAS  Google Scholar 

  20. Levis SR, Deasy PB (2001) Pharmaceutical applications of size reduced grades of surfactant co-processed microcrystalline cellulose. Int J Pharm 230:25–33

    Article  CAS  Google Scholar 

  21. Singh J, Kaur L, McCarthy OJ (2007) Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—a review. Food Hydrocoll 21:1–22

    Article  CAS  Google Scholar 

  22. Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Control Release 119:5–24

    Article  CAS  Google Scholar 

  23. Mehling T, Smirnova I, Guenther U, Neubert RHH (2009) Polysaccharide-based aerogels as drug carriers. J Non Cryst Solids 355:2472–2479

    Article  CAS  Google Scholar 

  24. Strickland FM (2001) Immune regulation by polysaccharides: implications for skin cancer. J Photochem Photobiol B 63:132–140

    Article  CAS  Google Scholar 

  25. Lapasin R, Pricl S (1995) Rheology of industrial polysaccharides: theory and applications. Aspen Publishers, New York, NY

    Book  Google Scholar 

  26. Pillai C, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678

    Article  CAS  Google Scholar 

  27. Bastos DC, Santos AEF, Silva MLV, Simao RA (2009) Hydrophobic corn starch thermoplastic films produced by plasma treatment. Ultramicroscopy 109:1089–1093

    Article  CAS  Google Scholar 

  28. Haag AP, Maier RM, Combie J, Geesey GG (2004) Bacterially derived biopolymers as wood adhesives. Int J Adhen Adhes 24:495–502

    Article  CAS  Google Scholar 

  29. Shi R, Zhang Z, Liu Q, Han Y, Zhang L, Chen D, Tian W (2007) Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending. Carbohydr Polym 69:748–755

    Article  CAS  Google Scholar 

  30. Reis AV, Guilherme MR, Cavalcanti OA, Rubira AF, Muniz EC (2007) Synthesis and characterization of pH-responsive hydrogels based on chemically modified Arabic gum polysaccharide. Polymer 47:2023–2029

    Article  Google Scholar 

  31. Liu LS, Fishman ML, Hicks KB (2007) Pectin in controlled drug delivery—a review. Cellulose 14:15–24

    Article  Google Scholar 

  32. Nakauma M, Funamia T, Nodaa S, Ishihara S, Al-Assaf S, Nishinari K, Phillips GO (2008) Comparison of sugar beet pectin, soybean soluble polysaccharide, and gum arabic as food emulsifiers. 1. Effect of concentration, pH, and salts on the emulsifying properties. Food Hydrocoll 22:1254–1267

    Article  CAS  Google Scholar 

  33. Sun RC, Fang JM, Tomkinson J, Hill CAS (1999) Esterification of hemicelluloses from poplar chips in homogenous solution of N, N-dimethylformamide/lithium chloride. J Wood Chem Technol 19:287–306

    Article  CAS  Google Scholar 

  34. Barikani M, Mohammadi M (2007) Synthesis and characterization of starch-modified polyurethane. Carbohydr Polym 68:773–780

    Article  CAS  Google Scholar 

  35. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70

    Article  CAS  Google Scholar 

  36. Cunha AG, Gandini A (2010) Turning polysaccharides into hydrophobic materials: a critical review. Part 2. Cellulose 17:1045–1065

    Article  CAS  Google Scholar 

  37. Kaith BS, Kalia S (2008) Graft copolymerization of MMA onto flax under different reaction conditions: a comparative study. Express Polym Lett 2:93–100

    Article  CAS  Google Scholar 

  38. Saikia CN, Ali F (1999) Graft copolymerization of methylmethacrylate onto high a-cellulose pulp extracted from Hibiscus sabdariffa and Gmelina arborea. Bioresour Technol 68:165–171

    Article  CAS  Google Scholar 

  39. Wan Z, Xiong Z, Ren H, Huang Y, Liu H, Xiong H, Wu Y, Han J (2011) Graft copolymerization of methyl methacrylate onto bamboo cellulose under microwave irradiation. Carbohydr Polym 83:264–269

    Article  CAS  Google Scholar 

  40. Gupta KC, Sahoo S, Khandekar K (2007) Graft copolymerization on to cellulose using binary mixture of monomers. J Macromol Sci A Pure Appl Chem 44:707–719

    Article  CAS  Google Scholar 

  41. Kalia S, Kaith BS (2008) Use of flax-g-poly(MMA) as reinforcing material for enhancement of properties of phenol formaldehyde composites. Int J Polym Anal Char 13:341–352

    Article  CAS  Google Scholar 

  42. Al-Karawi AJM, Al-Daraji AHR (2010) Preparation and using of acrylamide grafted starch as polymer drug carrier. Carbohydr Polym 79:769–774

    Article  CAS  Google Scholar 

  43. Jayakumara R, Prabaharana M, Reisa RL, Mano JF (2005) Graft copolymerized chitosan—present status and applications. Carbohydr Polym 62:142–158

    Article  Google Scholar 

  44. Onishi Y, Eshita Y, Murashita A, Mizuno M, Yoshida J (2007) Characteristics of DEAE-dextran-MMA graft copolymer as a nonviral gene carrier. Nanomed Nanotechnol Bio Med 3:184–191

    Article  CAS  Google Scholar 

  45. Thimma RT, Reddy NS, Tammishetti S (2003) Synthesis and characterization of guar gum-graft-polyacrylonitrile. Polym Adv Technol 14:663–668

    Article  Google Scholar 

  46. Stannett V (1981) Grafting. Radiat Phys Chem 18:215–222

    Article  CAS  Google Scholar 

  47. Ring W, Mita I, Jenkins AD, Bikales NM (1985) Source-based nomenclature for copolymers (Recommendations 1985). Pure Appl Chem 57:1427–1440

    Article  CAS  Google Scholar 

  48. Alferey T, Bandel D (1951) Paper presented in 118th American Chemical Society Annual Fall Meeting, through Mark HF. Rec. Chem. Progr, vol 12. Chicago, 4 Sept 1950, p 139

    Google Scholar 

  49. Kaith BS, Jindal R, Bhatia JK (2011) Morphological and thermal evaluation of soy protein concentrate on graft copolymerization with ethylmethacrylate. J Appl Polym Sci 120:2183–2190

    Article  CAS  Google Scholar 

  50. Basu D, Ak K, Tk M, Banerjee A (1998) Mechanical property studies of poly(methyl methacrylate)-grafted viscose fibres. J Appl Polym Sci 69:2585–2591

    Article  CAS  Google Scholar 

  51. Mehta IK, Misra BN, Chauhan GS (1994) Study of thermal and dyeing behavior of isotactic polypropylene fiber graft copolymerized with acrylate monomers using preirradiation method. J Appl Polym Sci 54:1171–1178

    Article  CAS  Google Scholar 

  52. Battaerd HAJ, Tregear GW (1967) Graft copolymers. Interscience, New York, NY

    Google Scholar 

  53. Burlant WJ, Hoffmann AS (1960) Block and graft copolymers. Rheinhold Pub Corp, New York, NY

    Google Scholar 

  54. Hsu ST, Pan TC (2007) Adsorption of paraquat using methacrylic acid-modified rice husk. Bioresour Technol 98:3617–3621

    Article  CAS  Google Scholar 

  55. Cho CG, Lee K (2002) Preparation of starch graft copolymer by emulsion polymerization. Carbohydr Polym 48:125–130

    Article  CAS  Google Scholar 

  56. Misra BN, Dogra R (1980) Grafting onto starch. IV. Graft copolymerization of methylmethacrylate by use of AIBN as radical initiator. J Macromol Sci Chem A 14:763–770

    Article  Google Scholar 

  57. Chiang Wy HC (1996) The improvements in flame retardance and mechanical properties of polypropylene/Fr blends by acrylic acid graft copolymerization. Eur Polym J 32:385–390

    Article  Google Scholar 

  58. Zahran MK, Mahmoud RI (2003) Peroxydiphosphate–metal ion–cellulose thiocarbonate redox system-induced graft copolymerization of vinyl monomers onto cotton fabric. J Appl Polym Sci 87:1879–1889

    Article  CAS  Google Scholar 

  59. Vlcek P, Janata M, Latalova M, Krız J, Cadova E, Toman L (2006) Controlled grafting of cellulose diacetate. Polymer 47:2587–2595

    Article  CAS  Google Scholar 

  60. Tizzotti M, Charlot A, Fleury E, Stenzel M, Bernard J (2010) Modification of polysaccharides through controlled/living radical polymerization grafting—towards the generation of high performance hybrids. Macromol Rapid Commun 31:1751–1772

    Article  CAS  Google Scholar 

  61. Kaur I, Misra BN, Gupta A, Chauhan GS (1998) Radiochemical grafting of methacrylonitrile and its binary mixture with methyl acrylate onto gelatin. Polym Int 46:275–279

    Article  CAS  Google Scholar 

  62. Kaith BS, Kalia S (2008) Preparation of microwave radiation induced graft copolymers and their applications as reinforcing material in phenolic composites. Polym Compos 29:791–797

    Article  CAS  Google Scholar 

  63. Khan MA, Shehrzade S, Sarwar M, Chowdhury U, Rahman MM (2001) Effect of pretreatment with UV radiation on physical and mechanical properties of photocured jute yarn with 1,6-hexanediol diacrylate (HDDA). J Polym Environ 9:115–124

    Article  CAS  Google Scholar 

  64. Hassan MM, Islam MR, Khan MA (2002) Effect of additives on the improvement of mechanical and degradable properties of photografted jute yarn with acrylamide. J Polym Environ 10:139–145

    Article  CAS  Google Scholar 

  65. Mamun M, Khan MA, Khan RA, Zaman HU, Saha M, Huque SMF (2010) Preparation of selective ion adsorbent by photo curing with acrylic and phosphoric acid on jute yarn. Fiber Polym 11:832–837

    Article  Google Scholar 

  66. Zaman HU, Khan MA, Khan RA, Rahman MA, Das LR, Mamun MA (2010) Role of potassium permanganate and urea on the improvement of the mechanical properties of jute polypropylene composites. Fiber Polym 11:455–463

    Article  CAS  Google Scholar 

  67. Jang J, Yoon KC, Ko SW (2001) Durable press finish of cotton via dual curing using UV light and heat. Fiber Polym 2:184–189

    Article  CAS  Google Scholar 

  68. Gobac ST, Vlatkovic M, Meic Z (1979) Gamma radiation-induced graft copolymerization of divinylbenzene onto cellulose fabric. J Appl Polym Sci 24:1101–1107

    Article  Google Scholar 

  69. Chauhan GS, Mishra BN, Dhiman SK, Guleria LK, Kaur I (2000) Polymers from renewable resources: kinetics of 4-vinyl pyridine radiochemical grafting onto cellulose extracted from pine needles. Radiat Phys Chem 58:181–190

    Article  CAS  Google Scholar 

  70. Deshayes S, Liagre M, Loupy A, Luche JL, Petit A (1999) Microwave activation in phase transfer catalysis. Tetrahedron 55:10851–10870

    Article  CAS  Google Scholar 

  71. Singh V, Tiwari A, Tripathi DN, Sanghi R (2006) Microwave enhanced synthesis of chitosan graft-polyacrylamide. Polymer 47:254–260

    Article  CAS  Google Scholar 

  72. Fang Y, Liu L, Li Y, Chen L (2005) Microwave-assisted graft copolymerization of ε-caprolactone onto chitosan via phthaloyl protection method. Carbohydr Polym 60:351–356

    Article  Google Scholar 

  73. Huacai G, Wan P, Dengke L (2006) Graft copolymerization of chitosan with acrylic acid under microwave irradiation and its water absorbency. Carbohydr Polym 66:372–378

    Article  Google Scholar 

  74. Xu W, Bao J, Zhang J, Shi M (1996) Microwave irradiation graft copolymerization of hydroxyethyl methacrylate onto wool fabrics. J Appl Polym Sci 70:2343–2347

    Article  Google Scholar 

  75. Kaith BS, Kalia S (2008) Microwave enhanced synthesis of flax-g-poly(MMA) for use in phenolic composites as reinforcement. E-J Chem 5:163–168

    Article  Google Scholar 

  76. Zhang J, Zhang S, Yuan K, Wang Y (2007) Graft copolymerization of artemisia seed gum with acrylic acid under microwave and its water absorbency. Macromol Sci A Pure Appl Chem 44:881–885

    Article  CAS  Google Scholar 

  77. Kumar A, Singh K, Ahuja M (2008) Xanthan-g-poly(acrylamide): microwave-assisted synthesis, characterization and in vitro release behaviour. Carbohydr Polym 76:261–267

    Article  Google Scholar 

  78. Singh V, Tiwari A, Tripathi DN, Sanghi R (2004) Microwave assisted synthesis of guar-g-polyacrylamide. Carbohydr Polym 58:1–6

    Article  CAS  Google Scholar 

  79. Singh V, Tripathi DN (2006) Microwave promoted grafting of acrylonitrile onto cassia siamea seed gum. J Appl Polym Sci 101:2384–2390

    Article  CAS  Google Scholar 

  80. Singh V, Kumar P, Sanghi R (2012) Use of microwave irradiation in the grafting modification of the polysaccharides–a review. Prog Polym Sci 37:340–364

    Article  CAS  Google Scholar 

  81. Chapiro A (1962) Radiation chemistry of polymeric system. Wiley Interscience, New York, NY

    Google Scholar 

  82. Khan F (2005) Characterization of methyl methacrylate grafting onto preirradiated biodegradable lignocellulose fiber by gamma-radiation. Macromol Biosci 5:78–89

    Article  CAS  Google Scholar 

  83. Daneault C, Kokta BV, Maldae O (1988) Grafting of vinyl monomers onto wood fibres initiated by peroxidation. Polym Bull 20:137–141

    Article  CAS  Google Scholar 

  84. Kumar G, Smith PJ, Payne GF (1999) Enzymatic grafting of a natural product onto chitosan to confer water solubility under basic conditions. Biotechnol Bioeng 63:154–165

    Article  CAS  Google Scholar 

  85. Wenzel A, Yamgishita H, Kitamoto D, Endo A, Haraya K, Nakane T, Hanai N, Matsuda H, Kamuswetz H, Paul D (2000) Effect of preparation condition of photoinduced graft filling polymerized membranes on pervaporation performance. J Membr Sci 179:69–77

    Article  CAS  Google Scholar 

  86. Yamaguchi T, Yamahara S, Nakao S, Kimura S (1994) Preparation of pervaporation membranes for removal of dissolved organics from water by plasma-graft filling polymerization. J Membr Sci 95:39–49

    Article  CAS  Google Scholar 

  87. Bhattacharyaa A, Misra BN (2004) Grafting: a versatile means to modify polymers techniques, factors and applications. Prog Polym Sci 29:767–814

    Article  Google Scholar 

  88. Kale KH, Desai AN (2011) Atmospheric pressure plasma treatment of textiles using non-polymerizing gases. Indian J Fiber Text 36:289–299

    CAS  Google Scholar 

  89. Kumar K, Kaith BS (2010) Psyllium and acrylic acid based polymeric networks synthesized under the influence of γ-radiations for sustained release of fungicide. Fiber Polym 11:147–152

    Article  CAS  Google Scholar 

  90. Kaith BS, Mittal H, Bhatia JK, Kalia S (2011) Polysaccharide graft copolymers–synthesis, properties and applications. In: Kalia S, Averous L (eds) Biopolymers: biomedical and environmental applications. Wiley, Hoboken, NJ

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susheel Kalia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kalia, S., Sabaa, M.W., Kango, S. (2013). Polymer Grafting: A Versatile Means to Modify the Polysaccharides. In: Kalia, S., Sabaa, M. (eds) Polysaccharide Based Graft Copolymers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36566-9_1

Download citation

Publish with us

Policies and ethics