Skip to main content

Crystalline Oxides on Silicon

  • Chapter
  • First Online:
High Permittivity Gate Dielectric Materials

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 43))

Abstract

The ability to integrate crystalline metal oxide dielectric layers into silicon structures can open the way for a variety of novel applications which enhances the functionality and flexibility, ranging from high-k gate dielectric replacements in future Metal Oxide Semiconductor (MOS) devices to oxide/silicon/oxide heterostructures for nanoelectronic application in quantum-effect devices. We present results for crystalline gadolinium oxides on silicon in the cubic bixbyite structure grown by solid source molecular beam epitaxy. On Si (100) oriented surfaces, crystalline Gd2O3 grows as (110)-oriented domains, with two orthogonal in-plane orientations. Layers grown under best vacuum conditions often exhibit poor dielectric properties due to the formation of crystalline interfacial silicide inclusions. Additional oxygen supply during growth improves the dielectric properties significantly. Experimental results for Gd2O3-based MOS capacitors grown under optimized conditions show that these layers are excellent candidates for application as very thin high-k materials replacing SiO2 in future MOS devices. Epitaxial growth of lanthanide oxides on silicon without any interfacial layer has the advantage of enabling defined interfaces engineering. We will show that the electrical properties of epitaxial Gd2O3 thin films on Si substrates can further be improved significantly by an atomic control of interfacial structures. The incorporation of few monolayers of Ge chemisorbed on the Si surface has been found to have significant impact on the electrical properties of crystalline Gd2O3 grown epitaxially on Si substrates. Efficient manipulation of Si(100) 4° miscut substrate surfaces can lead to single domain epitaxial Gd2O3 layer. Such epi-Gd2O3 layers exhibited significant lower leakage currents compared to the commonly obtained epitaxial layers with two orthogonal domains. For capacitance equivalent thicknesses below 1 nm, this difference disappears, indicating that for ultrathin layers, direct tunneling becomes dominant. Further, we investigate the effect of post-growth annealing on layer properties. We show that a standard forming gas anneal can eliminate flat-band voltage instabilities and hysteresis as well as reduce leakage currents by saturating the dangling bonds caused by the bonding mismatch. In addition, we investigated the impact of rapid thermal anneals on structural and electrical properties of crystalline Gd2O3 layers grown on Si. Finally, we will present a new approach for nanostructure formation which is based on solid-phase epitaxy of the Si quantum-well combined with simultaneous vapor-phase epitaxy of the insulator on top of the quantum-well. Ultra-thin single-crystalline Si buried in a single-crystalline insulator matrix with sharp interfaces was obtained by this approach on Si(111). In addition, structures consisting of a single-crystalline oxide layer with embedded Si nano-clusters for memory applications will also be demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Robertson, Rep. Prog. Phys. 69, 327 (2006)

    Article  Google Scholar 

  2. K.J. Hubbard, D.G. Schlom, J. Mater. Res. 11, 2757 (1996)

    Article  Google Scholar 

  3. D.P. Norton, Mat. Sci & Engineer. R 43, 139 (2004)

    Article  Google Scholar 

  4. G.-Y. Adachi, N. Imanaka, Chem. Rev. 98, 1479 (1998)

    Article  Google Scholar 

  5. H.J. Osten, M. Czernohorsky, R. Dargis, A. Laha, D. Kühne, E. Bugiel, A. Fissel, Microelectron. Eng. 84, 2222 (2007)

    Article  Google Scholar 

  6. G.V. Samsonov (ed.), The Oxide Handbook, 2nd edn. (IFI/Plenum, New York 1982)

    Google Scholar 

  7. K.A. Gschneidner, Jr., L. Eyring, G.H. Lander and G.R. Choppin (eds). Handbook on the Physics and Chemistry of Rare Earths, Lanthanides/Actinides: Chemistry, vol. 18, (Elsevier Science B.V, 1994)

    Google Scholar 

  8. J. Robertson, K. Xiong, Top. Appl. Phys 106, 313 (2007)

    Article  Google Scholar 

  9. M. Foëx, J.P. Traverse, Rev. Int. Hautes Temp. Refract 3, 429 (1966)

    Google Scholar 

  10. M. Badylevich, S. Shamuilia, V.V. Afanas’ev, A. Stesmans, A. Laha, H.J. Osten, A. Fissel, Appl. Phys. Lett. 90, 252101 (2007)

    Article  Google Scholar 

  11. M. Nolan, S. Grigoleit, D.C. Sayle, St.C. Parker, G.W. Watson, Surf. Sci. 576, 217 (2005)

    Article  Google Scholar 

  12. V. Mikhelashvili, G. Eisenstein, F. Edelmann, J. Appl. Phys. 90, 5447 (2001)

    Article  Google Scholar 

  13. V.A. Rozhkov, A.Y. Trusova, I.G. Berezhnoy, Thin Solid Films 325, 151 (1998)

    Article  Google Scholar 

  14. P. Delugas, V. Fiorentini, Microelectron. Reliab. 45, 831 (2005)

    Article  Google Scholar 

  15. G. Seguini, E. Bonera, S. Spiga, G. Scarel, M. Fanciulli, Appl. Phys. Lett. 85, 5316 (2004)

    Article  Google Scholar 

  16. W. Cai, S.E. Stone, J.P. Pelz, L.F. Edge, D.G. Schlom, Appl. Phys. Lett. 91, 042901 (2007)

    Article  Google Scholar 

  17. J. Kwo, M. Hong, A.R. Kortan, K.L. Queeny, Y.J. Chabal, R.L. Opila, D.A. Müller, S.N.G. Chu, J. Appl. Phys. 89, 3920 (2001)

    Article  Google Scholar 

  18. A. Fissel, H.J. Osten, E. Bugiel, J. Vac. Sci. Technol., B 21, 1765 (2003)

    Article  Google Scholar 

  19. H.J. Osten, E. Bugiel, M. Czernohorsky, Z. Elassar, O. Kirfel, A. Fissel, Top. Appl. Phys 106, 101 (2007)

    Article  Google Scholar 

  20. A. Laha, H.J. Osten, A. Fissel, Appl. Phys. Lett. 89, 143514 (2006)

    Article  Google Scholar 

  21. E.H. Nicollian, J.R. Brews, MOS Physics and Technology (Wiley, New York, 1982)

    Google Scholar 

  22. A. Fissel, Z. Elassar, E. Bugiel, M. Czernohorsky, O. Kirfel, H.J. Osten, J. Appl. Phys. 99, 074105 (2006)

    Article  Google Scholar 

  23. D. Schmeisser, J. Dabrowski, H.-J. Muessig, Mater. Sci. Engin. B 109, 30 (2004)

    Article  Google Scholar 

  24. M. Czernohorsky, A. Fissel, E. Bugiel, O. Kirfel, H.J. Osten, Appl. Phys. Lett. 88, 152905 (2006)

    Article  Google Scholar 

  25. T. Echtermeyer, H.D.B. Gottlob, T. Wahlbrink, T. Mollenhauer, M. Schmidt, J.K. Efavi, M.C. Lemme, H. Kurz, Solid-State Electron. 51, 617 (2007)

    Article  Google Scholar 

  26. R. Endres, Y. Stefanov, U. Schwalke, Microelectron. Reliab. 47, 528 (2007)

    Article  Google Scholar 

  27. A. Laha, A. Fissel, E. Bugiel, H.J. Osten, Appl. Phys. Lett. 88, 172107 (2006)

    Article  Google Scholar 

  28. J. Kwo, M. Hong, A.R. Kortan, K.T. Queeney, Y.J. Chabal, J.P. Mannaerts, T. Boone, J.J. Krajewski, A.M. Sergent, J.M. Rosamilia, Appl. Phys. Lett. 77, 130 (2000)

    Article  Google Scholar 

  29. H. Kroemer, in Heteroepitaxy on Si, MRS Symposia Proceedings No. 67, ed. by J.C.C. Fan, J.M. Poate (Materials Research Society, Pittsburgh, 1986), and references therein

    Google Scholar 

  30. A. Laha, E. Bugiel, J.X. Wang, Q.Q. Sun, A. Fissel, H.J. Osten, Appl. Phys. Lett. 93, 182907 (2008)

    Article  Google Scholar 

  31. H.J. Osten, J.P. Liu, E. Bugiel, H.J. Müssig, P. Zaumseil, Mat. Sci. & Engin. B 87, 297 (2001)

    Article  Google Scholar 

  32. A. Laha, A. Fissel, H.J. Osten, Appl. Phys. Lett. 90, 113508 (2007)

    Article  Google Scholar 

  33. A. Fissel, J. Dabrowski, H.J. Osten, J. Appl. Phys. 91, 8986 (2002)

    Article  Google Scholar 

  34. C.C. Fulton, G. Lucovsky, R.J. Nemanich, J. Appl. Phys. 99, 063708 (2006)

    Article  Google Scholar 

  35. A. Laha, A. Fissel, H.J. Osten, Appl. Phys. Lett. 96, 072903 (2010)

    Article  Google Scholar 

  36. A. Laha, B. Ai, P.R.P. Babu, A. Fissel, H.J. Osten, Appl. Phys. Lett. 99, 152902 (2011)

    Article  Google Scholar 

  37. Q.-Q. Sun, A. Laha, S.-J. Ding, D.W. Zhang, H.J. Osten, A. Fissel, Appl. Phys. Lett. 92, 152908 (2008)

    Article  Google Scholar 

  38. M. Czernohorsky, D. Tetzlaff, E. Bugiel, R. Dargis, H.J. Osten, H.D.B. Gottlob, M. Schmidt, M.C. Lemme, H. Kurz, Semicond. Sci. & Technol 23, 035010 (2008)

    Article  Google Scholar 

  39. G. Adachi, N. Imanaka, Z.C. Kang, Binary rare Earth Oxides (Kluwer Academic Publishers, Dordrecht, 2004)

    Google Scholar 

  40. R. Lo Nigro, V. Raineri, C. Bondiorno, R. Toro, G. Malandrino, I.L. Fragala, Appl. Phys. Lett. 83, 129 (2003)

    Article  Google Scholar 

  41. H.D.B. Gottlob, T. Echtermeyer, M. Schmidt, T. Mollenhauer, J.K. Efavi, T. Wahlbrink, M.C. Lemme, M. Czernohorsky, E. Bugiel, A. Fissel, H.J. Osten, H. Kurz, IEEE Electron Device Lett. 27, 814 (2006)

    Article  Google Scholar 

  42. A. Fissel, D. Kühne, E. Bugiel, H.J. Osten, Appl. Phys. Lett. 88, 153105 (2006)

    Article  Google Scholar 

  43. S. Tiwary, F. Rana, H. Hanafi, A. Hartsten, E. F. Crabbe, and K. Chan, Appl. Phys. Lett. 68, 1377 (1996)

    Google Scholar 

  44. K. Ichikawa, P. Punchaipetch, H. Yano, T. Hatayama, Y. Uraoka, T. Fuyuki, E. Takahashi, T. Hayashi, K. Ogata, Jpn. J. Appl. Phys. 44, L836 (2005)

    Article  Google Scholar 

  45. C. Dumas, J. Grisolia, L. Ressier, A. Arbouet, V. Paillard, G. Ben Assayag, A. Claverie, M. A. van den Boogaart, and J. Brugger, phys. stat. sol. (a) 204, 487 (2007)

    Google Scholar 

  46. O.M. Nayfeh, D.A. Antoniadis, K. Mantey, M.H. Nayfeh, Appl. Phys. Lett. 90, 153105 (2007)

    Article  Google Scholar 

  47. P. Punchaipetch, Y. Uraoka, T. Fuyuki, A. Tomyo, E. Takahashi, T. Hayashi, A. Sano, S. Horii, Appl. Phys. Lett. 89, 093502 (2006)

    Article  Google Scholar 

  48. A. Fissel, D. Kühne, E. Bugiel, H.J. Osten, J. Vac. Sci. Technol., B 24, 2041 (2006)

    Article  Google Scholar 

  49. A. Laha, D. Kühne, E. Bugiel, A. Fissel, and H. J. Osten, Semicond. Sci. Technol. 23, 085015 (2008)

    Google Scholar 

  50. S.D. Sarma, Am. Sci. 89, 516 (2001)

    Google Scholar 

  51. S.A. Wolf, D. Treger, IEEE Trans. Magnetics 36, 2748 (2000)

    Article  Google Scholar 

  52. F. Mireles, G. Kirczenow, Europhys. Lett. 59, 107 (2002)

    Article  Google Scholar 

  53. K.A. Gschineidner, L.Eyring (eds), Handbook on Physics and Chemistry of Rare Earth (Amsterdam, North-Holland, 1979)

    Google Scholar 

  54. P.A. Dowben, D.N. McIlroy, D. Li, Handbook on Physics and Chemistry of Rare Earth, vol. 24, ed. by K. A. Gschineidner, and L. Eyring (Amsterdam, North-Holland, 1997)

    Google Scholar 

  55. G. Torsello, M. Lomascolo, A. Licciulli, D. Diso, S. Tundo, M. Mazzer, Nat. Mater. 3, 632 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This chapter summarizes the work we have been doing over the last years. I am in particular grateful to A. Laha, A. Fissel, E. Bugiel, M. Czernohorsky, D. Schwendt, R. Dargis, R. Ranjith, Q.Q. Sun, D. Tetzlaff, D. Kühne, G. Glowatzki, and T. Wietler for their various contributions. I am also grateful to our partners all over the world for their support and collaboration. Part of this work was supported by the German Federal Ministry of Education and Research (BMBF) under the KrisMOS and the MegaEpos projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Jörg Osten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Osten, H.J. (2013). Crystalline Oxides on Silicon. In: Kar, S. (eds) High Permittivity Gate Dielectric Materials. Springer Series in Advanced Microelectronics, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36535-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36535-5_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36534-8

  • Online ISBN: 978-3-642-36535-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics