Skip to main content

Variational Formulations and Finite Element Methods

  • Chapter
  • First Online:
Book cover Mixed Finite Element Methods and Applications

Part of the book series: Springer Series in Computational Mathematics ((SSCM,volume 44))

Abstract

Although we shall not define in this chapter mixed and hybrid (or other non-standard) finite element methods in a very precise way, we would like to situate them in a sufficiently clear setting. As we shall see, boundaries between different methods are sometimes rather fuzzy. This will not be a real drawback if we nevertheless know how to apply correctly the principles underlying their analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.A. Adams. Sobolev spaces. Academic Press, New York, 1975.

    MATH  Google Scholar 

  2. J.P. Aubin. L’analyse non linéaire et ses motivations économiques. Masson, Paris, 1984.

    Google Scholar 

  3. V. Barbu and T. Precupanu. Convexity and optimization in Banach spaces. Editura Academiei, Bucarest, 1978.

    Google Scholar 

  4. K.J. Bathe. Finite Element Procedures in Engineering Analysis. Prentice Hall, Englewood Cliffs, N.J., 1982.

    Google Scholar 

  5. J.H. Bramble, R.D. Lazarov, and J.E. Pasciak. Least-squares for second order elliptic problems. Comp. Meth. Appl. Mech. Engng., 152:195–210, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Brezzi, M. Fortin, and L. D. Marini. Mixed finite element methods with continuous stresses. Math. Models Methods Appl. Sci., 3(2), 1993.

    Google Scholar 

  7. J. Céa. Approximation variationnelle des problèmes aux limites. Ann. Inst. Fourier, 14:2, 1964.

    Article  Google Scholar 

  8. P.G. Ciarlet. The finite element method for elliptic problems. North-Holland, Amsterdam, 1978.

    MATH  Google Scholar 

  9. P.G. Ciarlet. Mathematical elasticity. Vol. I. North-Holland Publishing Co., Amsterdam, 1988. Three-dimensional elasticity.

    Google Scholar 

  10. P.G. Ciarlet. Mathematical elasticity. Vol. II. North-Holland Publishing Co., Amsterdam, 1997. Theory of plates.

    Google Scholar 

  11. P.G. Ciarlet and P. Destuynder. A justification of the two-dimensional linear plate model. J. Mécanique, 18:315–344, 1979.

    MathSciNet  MATH  Google Scholar 

  12. P.G. Ciarlet and P.A. Raviart. A mixed finite element method for the biharmonic equation. In C. de Boor, editor, Mathematical Aspects of Finite Element in Partial Differential Equations. Academic Press, New York, 1974.

    Google Scholar 

  13. P. Constantin and C. Foias. Navier-Stokes Equations. University of Chicago Press, Chicago, 1988.

    MATH  Google Scholar 

  14. R. Dautray and J.-L. Lions. Mathematical analysis and numerical methods for science and technology. Vol. 1. Springer-Verlag, Berlin, 1990.

    Google Scholar 

  15. R. Dautray and J.L. Lions. Analyse mathématique et calcul numérique pour les sciences et les techniques. Collection Commissariat à l’Energie Atomique. Masson, Paris, 1984.

    Google Scholar 

  16. J. Dieudonné. Foundation of Modern Analysis. Institut des Hautes Études Scientifiques, Paris. Academic Press, New York and London, 1960.

    Google Scholar 

  17. J. Douglas and J. Wang. An absolutely stabilized finite element method for the Stokes problem. Math. Comput., 52:495–508, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  18. I. Ekeland and R. Temam. Analyse convexe et problèmes variationnels. Dunod Gauthier Villars, Paris, 1974.

    MATH  Google Scholar 

  19. M. Fortin and R. Glowinski. Augmented Lagrangian methods. North-Holland, Amsterdam, 1983.

    MATH  Google Scholar 

  20. M. Fortin and Guenette R. A new mixed finite element method for computing viscoelastic flows. J. Non-Newtonian Fluid Mech., 60:27–52, 1995.

    Google Scholar 

  21. B. Fraeijs de Veubeke. Displacement and equilibrium models in the finite element method. In O.C. Zienkiewicz and G. Holister, editors, Stress Analysis. John Wiley and Sons, New York, 1965.

    Google Scholar 

  22. L.P. Franca. New mixed finite element methods. PhD thesis, Appl. Mech. Divi., Stanford University, 1987.

    Google Scholar 

  23. P. Grisvard. Elliptic Problems in Non-Smooth Domains. Pitman, London, 1985.

    Google Scholar 

  24. K. Hellan. Analysis of elastic plates in flexure by a simplified finite element method, volume 46 of Civil Engineering Series. Acta Polytechnica Scandinavia, Trondheim, 1967.

    Google Scholar 

  25. L.R. Herrmann. Finite element bending analysis for plates. J. Eng. Mech. Div. ASCE, 93, EM5:13–26, 1967.

    Google Scholar 

  26. R. Hiptmair. Canonical construction of finite elements. Math. Comp., 68(228):1325–1346, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  27. T.J.R. Hughes. The finite element method: linear static and dynamic finite element analysis. Prentice-Hall, Englewood Cliffs N.J., 1987.

    MATH  Google Scholar 

  28. T.J.R. Hughes and L.P. Franca. A new finite element formulation for computational fluid dynamics: VII. the Stokes problem with various well-posed boundary conditions, symmetric formulations that converge for all velocity-pressure spaces. Comp. Meth. Appl. Mech. Eng., 65:85–96, 1987.

    Google Scholar 

  29. N. Kikuchi and J.T. Oden. Contact problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM Studies in Applied mathematics. SIAM, Philadelphia, 1988.

    Book  MATH  Google Scholar 

  30. L. D. Landau and E. M. Lifshitz. Course of theoretical physics. Vol. 8. Pergamon International Library of Science, Technology, Engineering and Social Studies. Pergamon Press, Oxford, 1984.

    Google Scholar 

  31. R. Leis. Initial-boundary value problems in mathematical physics. B. G. Teubner, Stuttgart, 1986.

    Book  MATH  Google Scholar 

  32. P.G. Lemarié-Rieusset. Recent Developments in the Navier-Stokes Problem. CRC Research Notes in Mathematics 431. Chapman and Hall, Boca Raton, 2002.

    Google Scholar 

  33. J.L. Lions and E. Magenes. Problèmes aux limites non-homogènes et applications. Dunod, Paris, 1968.

    MATH  Google Scholar 

  34. J.E. Marsden and T.J.R. Hughes. Mathematical Foundations of Elasticity. Prentice Hall, New York, 1983.

    MATH  Google Scholar 

  35. B. Mercier. Numerical solution of the biharmonic problem by mixed finite elements of class C 0. Boll. U.M.I., 10:133–149, 1974.

    Google Scholar 

  36. J. Nečas. Les méthodes directes en théorie des équations elliptiques. Masson, Paris, 1967.

    MATH  Google Scholar 

  37. T.H.H. Pian. Formulations of finite element methods for solid continua. In R.H. Gallagher, Y. Yamada, and J.T. Oden, editors, Recent Advances in Matrix Methods Structural Analysis and Design. The University of Alabama Press, Alabama, 1971.

    Google Scholar 

  38. T.H.H. Pian and P. Tong. Basis of finite element methods for solid continua. Int. J. Num. Meth. Eng., 1:3–28, 1969.

    Article  MATH  Google Scholar 

  39. P.A. Raviart and J.M. Thomas. Introduction à l’analyse numérique des équations aux dérivées partielles. Masson, Paris, 1983.

    MATH  Google Scholar 

  40. E. Reisnerr. On a variational theorem for finite elastic deformations. J. Math. Physics, 32:129–135, 1953.

    MathSciNet  Google Scholar 

  41. E. Reisnerr. On the variational theorem in elasticity. J. Math. Physics, 29:90–95, 1958.

    Google Scholar 

  42. R.T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, N.J., 1970.

    MATH  Google Scholar 

  43. H. Sohr. The Navier-Stokes Equations. Birkhauser, Basel, 2008.

    Google Scholar 

  44. R. Temam. Navier-Stokes Equations and Nonlinear Functional Analysis, 2nd Ed. SIAM, Philadelphia, 1995.

    Book  MATH  Google Scholar 

  45. F. Thomasset. Implementation of finite element methods for Navier–Stokes Equations. Springer Series in Comp. Physics. Springer-Verlag, Berlin, 1981.

    Book  MATH  Google Scholar 

  46. P. Tong and T.H.H. Pian. A variational principle and the convergence of a finite element method based on assumed stress distribution. Int. J. Solids Struct., 5:463–472, 1969.

    Article  MATH  Google Scholar 

  47. K. Yosida. Functional analysis. Springer-Verlag, New York, 1966.

    Google Scholar 

  48. O.C. Zienkiewicz. The finite element method. McGraw-Hill, London, 1977.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boffi, D., Brezzi, F., Fortin, M. (2013). Variational Formulations and Finite Element Methods. In: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36519-5_1

Download citation

Publish with us

Policies and ethics