Skip to main content

Imaging for Post-implant Dosimetry

  • Chapter
  • First Online:
Book cover Interstitial Prostate Brachytherapy

Abstract

Imaging the prostate after low-dose rate brachytherapy is a means of assessing the quality of the implant and the calculated dosimetry results can be correlated with the toxicity and eventual clinical outcomes for these patients. Computed tomography (CT) has long been the accepted imaging technique for post-implant dosimetry despite its acknowledged limitations. It is relatively cheap and convenient for the patient although definition of the prostate and structures at risk is limited because of the inherently poor soft tissue resolution of CT in this area. Magnetic resonance imaging (MRI) offers the advantage of superior soft tissue resolution but has limitations with source recognition and is relatively expensive. Transrectal ultrasound (TRUS) has been used to facilitate intraoperative dosimetry and is the basis for the newer real-time implant techniques that have evolved in recent years. TRUS however also has its limitations with source identification. Image fusion incorporating the benefits of different imaging techniques has been developed for post-implant dosimetry and can offer some improvements over CT but at some cost, and this approach is demanding of medical physics resources. Every brachytherapy centre should have an established programme for post-implant dosimetry in place that can help identify problems with technique and facilitate improvements in implant technique over time. This chapter will review the specific contribution and inherent limitations of the various imaging techniques that can be used for post-implant dosimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Qaisieh B, Ash D, Bottomley D et al (2002) Impact of prostate volume evaluation by different observers on CT-based postimplantation dosimetry. Radiother Oncol 62:267–273

    Article  PubMed  Google Scholar 

  • Al-Qaisieh B (2003) UK Prosate Brachytherapy Group. Pre- and post-implant dosimetry: an inter-comparison between UK prostate brachytherapy centres. Radiother Oncol 66:181–183

    Article  PubMed  Google Scholar 

  • Al-Qaisieh B, Smith D, Brearley E et al (2007) ComprehensiveI-125 multi seed comparison for prostate brachytherapy: dosimetry and visibility analysis. Radiother Oncol 84(2):140–147

    Article  PubMed  Google Scholar 

  • Al-Qaisieh B, Witteveen T, Carey B et al (2009) Correlation between pre- and postimplant dosimetry for iodine-125 seed implants for localized prostate cancer. Int J Radiat Oncol Biol Phys 75(2):626–630

    Article  PubMed  CAS  Google Scholar 

  • Allen Z, Merrick G, Butler W et al (2005) Detailed urethral dosimetry in the evaluation of prostate brachytherapy-related urinary morbidity. Int J Radiat Oncol Biol Phys 62:981–987

    Article  PubMed  Google Scholar 

  • Archer P, Puttagunta S, Rhode K et al (2010) An analysis of intraoperative versus post-operative dosimetry with CT, CT/MRI fusion and XMR for the evaluation of permanent prostate brachytherapy implants. Radiother Oncol 96(2):166–171

    Article  Google Scholar 

  • Crook J, Milosevic M, Catton P et al (2002) Interobserver variation in postimplant computed tomography contouring affects quality of prostate brachytherapy. Brachytherapy 1:66–73

    Article  PubMed  Google Scholar 

  • Crook J, Mclean M, Yeung I et al (2004) MRI-CT fusion to assess post brachytherapy prostate volume and the effects of prolonged oedema on dosimetry following transperineal interstitial permanent prostate brachytherapy. Brachytherapy 3:55–60

    Article  PubMed  Google Scholar 

  • De Brabandere M, Kirisits C, Peeters R et al (2006) Accuracy of seed reconstruction in prostate postplanning studied with a CT- and MRI-compatible phantom. Radiother Oncol 79(2):190–197

    Article  PubMed  Google Scholar 

  • Debois M, Oyen R, Maes F et al (1999) The contribution of magnetic resonance imaging to the three-dimensional treatment planning of localized prostate cancer. Int J Radiat Oncol Biol Phys 45:857–865

    Article  PubMed  CAS  Google Scholar 

  • Dogan N, Mohideen N, Glasgow G et al (2002) Effect of prostatic oedema on CT-based postimplant dosimetry. Int J Radiat Oncol Biol Phys 53:483–489

    Article  PubMed  Google Scholar 

  • Dubois D, Prestidge B, Hotchkiss L et al (1998) Intraobserver and interobserver variability of MR imaging- and CT-derived prostate volumes after transperineal interstitial permanent prostate brachytherapy. Radiology 207:785–789

    PubMed  CAS  Google Scholar 

  • Fuks Z, Leibel S, Wallner K et al (1991) The effect of local control on metastatic dissemination in carcinoma of the prostate: long-term results in patients treated with 125I implantation. Int J Radiat Oncol Biol Phys 21(3):537–547

    Article  PubMed  CAS  Google Scholar 

  • Han B, Wallner K (2001) Dosimetric and radiographic correlates to prostate brachytherapy-related rectal complications. Int J Cancer 96(6):372–378

    Article  PubMed  CAS  Google Scholar 

  • Holupka E, Meskell P, Burdette E et al (2004) An automatic seed finder for brachytherapy CT postplans based on the Hough transform. Med Phys 31(9):2672–2679

    Article  PubMed  CAS  Google Scholar 

  • Jaffray D, Siewerdsen J, Edmundson et al (2002) Flat-panel cone-beam CT on a mobile isocentric C-arm for image-guided brachytherapy. Proc SPIE 4682:209–217

    Article  Google Scholar 

  • Kalkner K, Kubicek G, Nillson J et al (2006) Prostate volume determination: differential volume measurements comparing CT and TRUS. Radiother Oncol 81(2):179–183

    Article  PubMed  Google Scholar 

  • Leclerc G, Lavallée M, Roy R et al (2006) Prostatic edema in 125I permanent prostate implants: dynamic rectal dosimetry taking volume changes into account. Med Phys 33:574–583

    Article  PubMed  CAS  Google Scholar 

  • Lee W, Roach M, Michalski J et al (2002) Interobserver variability leads to significant differences in quantifiers of prostate implant adequacy. Int J Radiat Oncol Biol Phys 54:457–461

    Article  PubMed  Google Scholar 

  • McLaughlin P, Narayana V, Drake D et al (2002) Comparison of MRI pulse sequences in defining prostate volume after permanent implantation. Int J Radiat Oncol Biol Phys 54:703–711

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin P, Narayana V, Meirovitz A et al (2005) Vessel-sparing prostate radiotherapy dose limitation to critical erectile vascular structures (internal pudental artery and corpus cavernosum) defined by MRI. Int J Radiat Oncol Biol Phys 61:20–31

    Article  PubMed  Google Scholar 

  • Merrick G, Butler W, Dorsey A et al (1999) Rectal dosimetric analysis following prostate brachytherapy. Int J Radiat Oncol Biol Phys 43:1021–1102

    Article  PubMed  CAS  Google Scholar 

  • Merrick G, Butler W, Wallner K et al (2002) The importance of radiation doses to the penile bulb vs. crura in the development of postbrachytherapy erectile dysfunction. Int J Radiat Oncol Biol Phys 54:1055–1062

    Article  PubMed  Google Scholar 

  • McNeely L, Stone N, Presser J et al (2004) Influence of prostate volume on dosimetry results in real-time 125I seed implantation. Int J Radiat Oncol Biol Phys 58:292–299

    Article  PubMed  Google Scholar 

  • Moerland M (1998) The effect of oedema on post implant dosimetry of permanent iodine-125 prostate implants: A simulation study. J Brachyther Int 14:225–231

    Google Scholar 

  • Nag S, Bice W, DeWyngaert K et al (2000) The American Brachytherapy Society recommendations for permanent prostate brachytherapy postimplant dosimetric analysis. Int J Radiat Oncol Biol Phys 46:221–230

    Article  PubMed  CAS  Google Scholar 

  • Nag S, Ellis R, Merrick G et al (2002) American Brachytherapy Society recommendations for reporting morbidity after prostate brachytherapy. Int J Radiat Oncol Biol Phys 54(2):462–470

    Article  PubMed  Google Scholar 

  • Paulo A, Salembwier C, Venselaar J et al (2010) Review of intraoperative imaging and planning techniques in permanent seed prostate brachytherapy. Radiotherapy Oncol 94(1):12–23

    Article  Google Scholar 

  • Pinkawa M, Asadpour B, Piroth M et al (2009) Rectal dosimetry following prostate brachytherapy with stranded seeds – comparison of transrectal ultrasound intra-operative planning (day 0) and computed tomography-postplanning (day 1 vs. day 30) with special focus on sources placed close to the rectal wall. Radiother Oncol 91(2):207–212

    Article  PubMed  Google Scholar 

  • Polo A, Cattani F, Vavassori A et al (2004) MR and CT image fusion for postimplant analysis in permanent prostate seed implants. Int J Radiat Oncol Biol Phys 60:1572–1579

    Article  PubMed  Google Scholar 

  • Potters L, Cao Y, Calugaru E et al (2001) A comprehensive review of CT-based dosimetry parameters and biochemical control in patients treated with permanent prostate brachytherapy. Int J Radiat Oncol Biol Phys 50:605–661

    Article  PubMed  CAS  Google Scholar 

  • Potters L, Huang D, Calugaru E et al (2003) Importance of Implant dosimetry for patients undergoing prostate brachytherapy. Urol 62(6):1073–1077

    Article  PubMed  Google Scholar 

  • Reed D, Wallner K, Ford E et al (2005) Effect of post-implant edema on prostate brachytherapy treatment margins. Int J Radiat Oncol Biol Phys 63:1469–1473

    Article  PubMed  Google Scholar 

  • Remeijer P, Rasch C, Lebesque J et al (1999) A general methodology for three-dimensional analysis of variation in target volume delineation. Med Phys 26:931–994

    Article  PubMed  CAS  Google Scholar 

  • Roy J, Wallner K, Harrington P et al (1993) CT-based evaluation method for permanent implants: application to prostate. Int J Radiat Oncol Biol Phys 26(1):163–169

    Article  PubMed  CAS  Google Scholar 

  • Salembier C, Lavagnini P, Nickers P et al (2007) Tumour and target volumes in permanent prostate brachytherapy: a supplement to the ESTRO/EAU/EORTC recommendations on prostate brachytherapy. Radiother Oncol 83:3–10

    Article  PubMed  Google Scholar 

  • Siewerdsen J, Moseley D, Burch S et al (2005) Volume CT with a flat-panel detector on a mobile, isocentric C-arm: pre-clinical investigation in guidance of minimally invasive surgery. Med Phys 32:241–254

    Article  PubMed  CAS  Google Scholar 

  • Smith W, Lewis C, Bauman G et al (2007) Prostate volume contouring: a 3D analysis of segmentation using 3DTRUS, CT, and MR. Int J Radiat Oncol Biol Phys 67(4):1238–1247

    Article  PubMed  Google Scholar 

  • Snyder K, Stock R, Hong S et al (2001) Defining the risk of developing Grade 2 proctitis following 125I prostate brachytherapy using a rectal dose–volume histogram analysis. Int J Radiat Oncol Biol Phys 50(2):335–341

    Article  PubMed  CAS  Google Scholar 

  • Steggerda M, Schneider C, van Herk M et al (2005) The applicability of simultaneous TRUS-CT imaging for the evaluation of prostate seed implants. Med Phys 32:2262–2271

    Article  PubMed  Google Scholar 

  • Steggerda M, Luc M, Moonen H et al (2007) The influence of geometrical changes on the dose distribution after I-125 seed implantation of the prostate. Radiother Oncol 83(1):11–17

    Article  PubMed  Google Scholar 

  • Su Y, Davis B, Herman M et al (2004) Prostate brachytherapy seed localization by analysis of multiple projections: identifying and addressing the seed overlap problem. Med Phys 31:1277–1287

    Article  PubMed  Google Scholar 

  • Su Y, Davis B, Herman M et al (2005) Examination of dosimetry accuracy as a function of seed detection rate in permanent prostate brachytherapy. Med Phys 32(9):3049–3056

    Article  PubMed  Google Scholar 

  • Tanaka O, Hayashi S, Matsue M et al (2006a) Comparison of MRI-based and CT/MRI fusion–based postimplant dosimetric analysis of prostate brachytherapy. Int J Radiat Oncol Biol Phys 66:597–602

    Article  PubMed  Google Scholar 

  • Tanaka O, Hayashi S, Sakurai K et al (2006b) Importance of the CT/MRI fusion method as a learning tool for CT-based postimplant dosimetry in prostate brachytherapy. Importance of the CT/MRI fusion method as a learning tool for CT-based postimplant dosimetry in prostate brachytherapy dosimetry. Radiother Oncol 81(3):303–308

    Article  PubMed  Google Scholar 

  • Taussky D, Austen L, Toi A et al (2005) Sequential evaluation of prostate edema after permanent seed prostate brachytherapy using CT-MRI fusion. Int J Radiat Oncol Biol Phys 62:974–980

    Article  PubMed  Google Scholar 

  • Thomas S, Wachowicz K, Fallone B (2009) MRI of prostate brachytherapy seeds at high field: a study in phantom. Med Phys 36(11):5228–5235

    Article  PubMed  CAS  Google Scholar 

  • Todor D, Cohen G, Amols H et al (2002) Operator-free, film-based 3D seed reconstruction in brachytherapy. Phys Med Biol 47(12):2031–2048

    Article  PubMed  CAS  Google Scholar 

  • Waterman F, Dicker A (2000) The impact of postimplant oedema on the urethral dose in prostate brachytherapy. Int J Radiat Oncol Biol Phys 47:661–664

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Zaider M, Worman M et al (2004) On the question of 3D seed reconstruction in prostate brachytherapy: the determination of x-ray source and film locations. Phys Med Biol 49(19):335–345

    Article  Google Scholar 

  • Zhanrong G, Wilkins D, Eapen L et al (2007) A study of prostate delineation referenced against a gold standard created from the visible human data. Radiother Oncol 85(2):239–246

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan M. Carey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carey, B.M. (2013). Imaging for Post-implant Dosimetry. In: Kovács, G., Hoskin, P. (eds) Interstitial Prostate Brachytherapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36499-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36499-0_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36498-3

  • Online ISBN: 978-3-642-36499-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics