Advertisement

Wood Formation Under Drought Stress and Salinity

  • Silke LautnerEmail author
Chapter
Part of the Plant Cell Monographs book series (CELLMONO, volume 20)

Abstract

As our environment changes, salinity and drought are becoming increasingly significant abiotic stress factors. Salinity reduces the ability to take up water, and this in turn causes alterations in wood formation; changes that are very often found to correspond closely to those caused by water deficiency. For example, both abiotic stress factors lead to a reduction in the extent of year ring increment, and they also affect xylem element architecture, leading to alterations in the hydraulic properties, as well as the chemical composition of the woody body. The intensity of the response is found to be dependent not only on the intensity of the stress but also on tree species, intraspecific variety, and even on provenances.

Keywords

Salt Stress Drought Stress Wood Formation Water Deficiency Vessel Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by funding from the Center for a Sustainable University, Universität Hamburg, Germany, providing a fellowship in the Postdoctoral Research Group ‘Sustainable Future’.

References

  1. Abe H, Nakai T (1999) Effect of the water status within a tree on tracheid morphogenesis in Cryptomeria japonica D-Don. Trees Struct Funct 14:124–129Google Scholar
  2. Abe H, Nakai T, Utsumi Y, Kagawa A (2003) Temporal water deficit and wood formation in Cryptomeria japonica. Tree Physiol 23:859–863PubMedCrossRefGoogle Scholar
  3. Arend M, Fromm J (2007) Seasonal change in the drought response of wood cell development in poplar. Tree Physiol 27:985–992PubMedCrossRefGoogle Scholar
  4. Baas P, Schweingruber FH (1987) Ecological trends in the wood anatomy of trees, shrubs and climbers from Europe. IAWA Bull 8:245–274Google Scholar
  5. Baas P, Werker E, Fahn A (1983) Some ecological trends in vessel characters. IAWA Bull 4: 141–159Google Scholar
  6. Bacelar EA, Moutinho-Pereira JM, Goncalves BC, Ferreira HF, Correia CA (2007) Changes in growth, gas exchange, xylem hydraulic properties and water use efficiency of three olive cultivars under contrasting water availability regimes. Environ Exp Bot 60:183–192CrossRefGoogle Scholar
  7. Battipaglia G, De Micco V, Brand WA, Linke P, Aronne G, Saurer M, Cherubini P (2010) Variations of vessel diameter and delta 13C in false rings of Arbutus unedo L. reflect different environmental conditions. New Phytol 188:1099–1112PubMedCrossRefGoogle Scholar
  8. Carlquist S, Hoekman DA (1985) Ecological wood anatomy of the woody Southern Californian flora. IAWA Bull 6:319–347Google Scholar
  9. Cave ID, Walker JCF (1994) Stiffness of wood in fast-grown plantation softwoods – the influence of microfibril angle. For Prod J 44:43–48Google Scholar
  10. Chang Y, Chen SL, Yin WL, Wang RG, Liu YF, Shi Y, Shen YY, Li Y, Jiang J, Liu Y (2006) Growth, gas exchange, abscisic acid, and calmodulin response to salt stress in three poplars. J Integr Plant Biol 48:286–293CrossRefGoogle Scholar
  11. Chen S, Polle A (2010) Salinity tolerance of Populus. Plant Biol 12:317–333PubMedCrossRefGoogle Scholar
  12. Chen SL, Li JK, Wang SS, Hüttermann A, Altman A (2001) Salt, nutrient uptake and transport, and ABA of Populus euphratica; a hybrid in response to increasing soil NaCl. Trees Struct Funct 15:186–194CrossRefGoogle Scholar
  13. Chen SL, Li JK, Wang TH, Wang SS, Polle A, Hüttermann A (2002) Osmotic stress and ion-specific effects on xylem abscisic acid and the relevance to salinity tolerance in poplar. J Plant Growth Regul 21:224–233CrossRefGoogle Scholar
  14. Chen SL, Li JK, Wang SS, Fritz E, Hüttermann A, Altman A (2003a) Effects of NaCl on shoot growth, transpiration, ion compartmentation, and transport in regenerated plants of Populus euphratica and Populus tomentosa. Can J For Res (Revue Canadienne De Recherche Forestiere) 33:967–975CrossRefGoogle Scholar
  15. Chen SL, Li JK, Wang TH, Wang SS, Polle A, Hüttermann A (2003b) Gas exchange, xylem ions and abscisic acid response to Na+-salts and Cl-salts in Populus euphratica. Acta Bot Sin 45: 561–566Google Scholar
  16. Choat B, Cobb AR, Jansen S (2008) Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytol 177:608–625PubMedCrossRefGoogle Scholar
  17. Clifton NC (1969) Resin pockets in Canterbury Radiata pine G. N Z J For 14:38–49Google Scholar
  18. Cocozza C, Giovannelli A, Traversi ML, Castro G, Cherubini P, Tognetti R (2011) Do tree-ring traits reflect different water deficit responses in young poplar clones (Populus × canadensis Monch 'I-214' and P. deltoides 'Dvina')? Trees Struct Funct 25:975–985CrossRefGoogle Scholar
  19. Corcuera L, Camarero JJ, Gil-Pelegrin E (2004) Effects of a severe drought on Quercus ilex radial growth and xylem anatomy. Trees Struct Funct 18:83–92CrossRefGoogle Scholar
  20. Cown DJ (1973) Resin pockets their occurrence and formation in New-Zealand forests. N Z J For 18:233–251Google Scholar
  21. Croteau R, Johnson MA (1985) Biosynthesis of terpenoid wood extractives. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic, Orlando, FL, Xvi+679pGoogle Scholar
  22. de Luis M, Novak K, Raventos J, Gricar J, Prislan P, Cufar K (2011) Cambial activity, wood formation and sapling survival of Pinus halepensis exposed to different irrigation regimes. For Ecol Manage 262:1630–1638CrossRefGoogle Scholar
  23. Donaldson LA (2002) Abnormal lignin distribution in wood from severely drought stressed Pinus radiata trees. IAWA J 23:161–178Google Scholar
  24. Dünisch O, Bauch J (1994) Influence of soil substrate and drought on wood formation of spruce (Picea abies L. karst) under controlled conditions. Holzforschung 48:447–457CrossRefGoogle Scholar
  25. Dunn AL, Barford CC, Wofsy SC, Goulden ML, Daube BC (2007) A long-term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends. Glob Chang Biol 13:577–590CrossRefGoogle Scholar
  26. Eberhardt TL, Han JS, Micales JA, Young RA (1994) Decay resistance in conifer seed cones – role of resin acids as inhibitors of decomposition by white-rot fungi. Holzforschung 48:278–284CrossRefGoogle Scholar
  27. Eilmann B, Weber P, Rigling A, Eckstein D (2006) Growth reactions of Pinus sylvestris L. and Quercus pubescens Willd. to drought years at a xeric site in Valais, Switzerland. Dendrochronologia 23:121–132CrossRefGoogle Scholar
  28. Eilmann B, Zweifel R, Buchmann N, Fonti P, Rigling A (2009) Drought-induced adaptation of the xylem in Scots pine and pubescent oak. Tree Physiol 29:1011–1020PubMedCrossRefGoogle Scholar
  29. Eilmann B, Zweifel R, Buchmann N, Pannatier EG, Rigling A (2011) Drought alters timing, quantity, and quality of wood formation in Scots pine. J Exp Bot 62:2763–2771PubMedCrossRefGoogle Scholar
  30. Escalante-Perez M, Lautner S, Nehls U, Selle A, Teuber M, Schnitzler JP, Teichmann T, Fayyaz P, Hartung W, Polle A, Fromm J, Hedrich R, Ache P (2009) Salt stress affects xylem differentiation of grey poplar (Populus × canescens). Planta 229:299–309PubMedCrossRefGoogle Scholar
  31. Esteban LG, Martin JA, de Palacios P, Fernandez FG (2012) Influence of region of provenance and climate factors on wood anatomical traits of Pinus nigra Arn. subsp salzmannii. Eur J For Res 131:633–645CrossRefGoogle Scholar
  32. FAO, Food and Agriculture Organization of the United Nations (2007) Dominant type of problem lands. In: Digital Media Series. http://www.fao.org/fileadmin/templates/nr/images/resources/images/Maps/geonetwork/probland.png. Accessed Oct 2012
  33. February EC, Stock WD, Bond WJ, Leroux DJ (1995) Relationships between water availability and selected vessel characteristics in Eucalyptus grandis and 2 hybrids. IAWA J 16:269–276Google Scholar
  34. Fereres E, Acevedo E, Henderson DW, Hsiao TC (1978) Seasonal-changes in water potential and turgor maintenance in sorghum and maize under water stress. Physiol Plant 44:261–267CrossRefGoogle Scholar
  35. Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45PubMedGoogle Scholar
  36. Frey-Wissling A (1942) Uber die Entstehung von Harztaschen. Schweiz Zeitschr Forstw 93: 101–106Google Scholar
  37. Fu PL, Jiang YJ, Wang AY, Brodribb TJ, Zhang JL, Zhu SD, Cao KF (2012) Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest. Ann Bot 110:189–199PubMedCrossRefGoogle Scholar
  38. Garcia Esteban L, Antonio Martin J, de Palacios P, Garcia Fernandez F, Lopez R (2010) Adaptive anatomy of Pinus halepensis trees from different Mediterranean environments in Spain. Trees Struct Funct 24:19–30CrossRefGoogle Scholar
  39. Garcia-Gonzalez I, Eckstein D (2003) Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiol 23:497–504CrossRefGoogle Scholar
  40. Gea-Izquierdo G, Fonti P, Cherubini P, Martin-Benito D, Chaar H, Canellas I (2012) Xylem hydraulic adjustment and growth response of Quercus canariensis Willd. to climatic variability. Tree Physiol 32:401–413PubMedCrossRefGoogle Scholar
  41. Glerum C (1970) Drought ring formation in conifers. For Sci 16:246–252Google Scholar
  42. Groover A, Robischon M (2006) Developmental mechanisms regulating secondary growth in woody plants. Curr Opin Plant Biol 9:55–58PubMedCrossRefGoogle Scholar
  43. Hacke U, Sauter JJ (1996) Drought-induced xylem dysfunction in petioles, branches, and roots of Populus balsamifera L. and Alnus glutinosa (L.) Gaertn. Plant Physiol 111:413–417PubMedGoogle Scholar
  44. Hacke UG, Sperry JS (2001) Functional and ecological xylem anatomy. Perspect Plant Ecol Evol Syst 4:97–115CrossRefGoogle Scholar
  45. Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloch KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126: 457–461CrossRefGoogle Scholar
  46. Hacke UG, Sperry JS, Pittermann J (2004) Analysis of circular bordered pit function – II. Gymnosperm tracheids with torus-margo pit membranes. Am J Bot 91:386–400PubMedCrossRefGoogle Scholar
  47. Harris JM, Meylan BA (1965) Influence of microfibril angle on longitudinal and tangential shrinkage in Pinus radiata. Holzforschung 19:144–152CrossRefGoogle Scholar
  48. Hodges JD, Lorio PL (1975) Moisture stress and composition of xylem oleoresin in loblolly-pine. For Sci 21:283–290Google Scholar
  49. Hoffer M, Tardif JC (2009) False rings in jack pine and black spruce trees from eastern Manitoba as indicators of dry summers. Can J For Res (Revue Canadienne De Recherche Forestiere) 39:1722–1736CrossRefGoogle Scholar
  50. Holtta T, Vesala T, Peramaki M, Nikinmaa E (2002) Relationships between embolism, stem water tension, and diameter changes. J Theor Biol 215:23–38PubMedCrossRefGoogle Scholar
  51. Irvine J, Grace J (1997) Continuous measurements of water tensions in the xylem of trees based on the elastic properties of wood. Planta 202:455–461CrossRefGoogle Scholar
  52. Janssonius HH (1950) The vessels in the wood of Javan mangrove trees. Blumea 6:465–469Google Scholar
  53. Janz D, Lautner S, Wildhagen H, Behnke K, Schnitzler JP, Rennenberg H, Fromm J, Polle A (2012) Salt stress induces the formation of a novel type of ‘pressure wood’ in two Populus species. New Phytol 194:129–141PubMedCrossRefGoogle Scholar
  54. Johnson RH, Young BL, Alstad DN (1997) Responses of ponderosa pine growth and volatile terpene concentrations to manipulation of soil water and sunlight availability. Can J For Res 27:1794–1804CrossRefGoogle Scholar
  55. Junghans U, Polle A, Duechting P, Weiler E, Kuhlman B, Gruber F, Teichmann T (2006) Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology. Plant Cell Environ 29:1519–1531PubMedCrossRefGoogle Scholar
  56. Kaldewey H, Ginkel U, Wawczyniak G (1974) Auxin transport and water stress in pea (Pisum sativum L.). Berichte Der Deutschen Botanischen Gesellschaft 87:563–576Google Scholar
  57. Khamis MH, Hammad HH (2007) Effect of irrigation by saline ground water on the growth of some conifer seedlings: mortality, growth, biomass and physical wood properties, vol 58. Bulletin of Faculty of Agriculture, Cairo University, pp 36–45Google Scholar
  58. Langer K, Ache P, Geiger D, Stinzing A, Arend M, Wind C, Regan S, Fromm J, Hedrich R (2002) Poplar potassium transporters capable of controlling K(+) homeostasis and K(+)-dependent xylogenesis. Plant J 32:997–1009PubMedCrossRefGoogle Scholar
  59. Liphschitz N, Waisel Y (1970) The effect of water stresses on radial growth of Populus euphratica D. La-Yaaran 20:53–61Google Scholar
  60. Logullo MA, Salleo S, Piaceri EC, Rosso R (1995) Relations between vulnerability to xylem embolism and xylem conduit dimensions in young trees of Quercus cerris. Plant Cell Environ 18:661–669CrossRefGoogle Scholar
  61. Lovisolo C, Schubert A (1998) Effects of water stress on vessel size and xylem hydraulic conductivity in Vitis vinifera L. J Exp Bot 49:693–700Google Scholar
  62. Maherali H, DeLucia EH (2000) Xylem conductivity and vulnerability to cavitation of ponderosa pine growing in contrasting climates. Tree Physiol 20:859–867PubMedCrossRefGoogle Scholar
  63. Marchand N, Filion L (2012) False rings in the white pine (Pinus strobus) of the Outaouais Hills, Quebec (Canada), as indicators of water stress. Can J For Res (Revue Canadienne De Recherche Forestiere) 42:12–22CrossRefGoogle Scholar
  64. Mark RE, Gillis PP (1973) Relationship between fiber modulus and S2 angle. Tappi 56:164–167Google Scholar
  65. Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659CrossRefGoogle Scholar
  66. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kuebler K, Bissolli P, Braslavska OG, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donnelly A, Filella Y, Jatcza K, Mage F, Mestre A, Nordli O, Penuelas J, Pirinen P, Remisova V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski FE, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12: 1969–1976CrossRefGoogle Scholar
  67. Meyer RF, Boyer JS (1972) Sensitivity of cell-division and cell elongation to low water potentials in soybean hypocotyls. Planta 108:77CrossRefGoogle Scholar
  68. Micales JA, Han JS, Davis JL, Young RA (1994) Chemical composition and fungitoxic activities of pine cone extractives. Biodeterioration research 4. Mycotoxins, wood decay, plant stress, biocorrosion, and general biodeterioration. Plenum, New York, pp 317–332Google Scholar
  69. Munne-Bosch S (2007) Aging in perennials. Crit Rev Plant Sci 26:123–138CrossRefGoogle Scholar
  70. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250PubMedCrossRefGoogle Scholar
  71. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681PubMedCrossRefGoogle Scholar
  72. Nicholls JWP, Waring HD (1977) Effect of environmental-factors on wood characteristics –.4. Irrigation and partial droughting of Pinus radiata. Silvae Genetica 26:107–111Google Scholar
  73. Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, Perrot-Rechenmann C, Sandberg G, Bhalerao RP (2008) Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell 20:843–855PubMedCrossRefGoogle Scholar
  74. Palakit K, Siripattanadilok S, Duangsathaporn K (2012) False ring occurrences and their identification in teak (Tectona grandis) in North-Eastern Thailand. J Trop For Sci 24:387–398Google Scholar
  75. Piao S, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang J, Barr A, Chen A, Grelle A, Hollinger DY, Laurila T, Lindroth A, Richardson AD, Vesala T (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451: 49–52PubMedCrossRefGoogle Scholar
  76. Rigling A, Waldner PO, Forster T, Brasker OU, Pouttu A (2001) Ecological interpretation of tree-ring width and intraannual density fluctuations in Pinus sylvestris on dry sites in the central Alps and Siberia. Can J For Res (Revue Canadienne De Recherche Forestiere) 31:18–31CrossRefGoogle Scholar
  77. Rigling A, Braker O, Schneiter G, Schweingruber F (2002) Intra-annual tree-ring parameters indicating differences in drought stress of Pinus sylvestris forests within the Erico-Pinion in the Valais (Switzerland). Plant Ecol 163:105–121CrossRefGoogle Scholar
  78. Rigling A, Bruhlhart H, Braker OU, Forster T, Schweingruber FH (2003) Effects of irrigation on diameter growth and vertical resin duct production in Pinus sylvestris L. on dry sites in the central Alps, Switzerland. For Ecol Manage 175:285–296CrossRefGoogle Scholar
  79. Savidge RA (2001) Intrinsic regulation of cambial growth. J Plant Growth Regul 20:52–77CrossRefGoogle Scholar
  80. Searson MJ, Thomas DS, Montagu KD, Conroy JP (2004) Wood density and anatomy of water-limited eucalypts. Tree Physiol 24:1295–1302PubMedCrossRefGoogle Scholar
  81. Seifert T, Breibeck J, Seifert S, Biber P (2010) Resin pocket occurrence in Norway spruce depending on tree and climate variables. For Ecol Manage 260:302–312CrossRefGoogle Scholar
  82. Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133: 651–669PubMedCrossRefGoogle Scholar
  83. Sheldrake AR (1979) Effects of osmotic-stress on polar auxin transport in Avena mesocotyl sections. Planta 145:113–117CrossRefGoogle Scholar
  84. Sheriff DW, Whitehead D (1984) Photosynthesis and wood structure in Pinus radiata D-Don during dehydration and immediately after rewatering. Plant Cell Environ 7:53–62CrossRefGoogle Scholar
  85. Sperry JS, Saliendra NZ (1994) Intra-plant and inter-plant variation in xylem cavitation in Betula occidentalis. Plant Cell Environ 17:1233–1241CrossRefGoogle Scholar
  86. Sperry JS, Hacke UG, Pittermann J (2006) Size and function in conifer tracheids and angiosperm vessels. Am J Bot 93:1490–1500PubMedCrossRefGoogle Scholar
  87. Sterck FJ, Zweifel R, Sass-Klaassen U, Chowdhury Q (2008) Persisting soil drought reduces leaf specific conductivity in Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens). Tree Physiol 28:529–536PubMedCrossRefGoogle Scholar
  88. Stiller V (2009) Soil salinity and drought alter wood density and vulnerability to xylem cavitation of baldcypress (Taxodium distichum (L.) Rich.) seedlings. Environ Exp Bot 67:164–171CrossRefGoogle Scholar
  89. Teichmann T, Bolu-Arianto WH, Olbrich A, Langenfeld-Heyser R, Goebel C, Grzeganek P, Feussner I, Haensch R, Polle A (2008) GH3: GUS reflects cell-specific developmental patterns and stress-induced changes in wood anatomy in the poplar stem. Tree Physiol 28:1305–1315PubMedCrossRefGoogle Scholar
  90. Tuominen H, Puech L, Fink S, Sundberg B (1997) A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiol 115: 577–585PubMedGoogle Scholar
  91. Turtola S, Manninen AM, Rikala R, Kainulainen P (2003) Drought stress alters the concentration of wood terpenoids in Scots pine and Norway spruce seedlings. J Chem Ecol 29:1981–1995PubMedCrossRefGoogle Scholar
  92. Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap., 2nd edn, Springer series in wood science. Springer, BerlinCrossRefGoogle Scholar
  93. Uggla C, Moritz T, Sandberg G, Sundberg B (1996) Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA 93:9282–9286PubMedCrossRefGoogle Scholar
  94. Uggla C, Mellerowicz EJ, Sundberg B (1998) Indole-3-acetic acid controls cambial growth in Scots pine by positional signaling. Plant Physiol 117:113–121PubMedCrossRefGoogle Scholar
  95. Villar-Salvador P, Castro-Diez P, Perez-Rontome C, Montserrat-Marti G (1997) Stem xylem features in three Quercus (Fagaceae) species along a climatic gradient in NE Spain. Trees Struct Funct 12:90–96Google Scholar
  96. Watson AJ, Dadswell HE (1964) Influence of fibre morphology on paper properties. 3. Length: diameter (L/D) ratio. 4. Micellar spiral angle, vol 17. APPITA, Melbourne, pp 146–156Google Scholar
  97. Whitmore FW, Zahner R (1967) Evidence for a direct effect of water stress on tracheid cell wall metabolism in pine. For Sci 13:397Google Scholar
  98. Wimmer R, Downes GM, Evans R (2002) Temporal variation of microfibril angle in Eucalyptus nitens grown in different irrigation regimes. Tree Physiol 22:449–457PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Wood ScienceUniversität HamburgHamburgGermany

Personalised recommendations