Climate Control of Wood Formation: Illustrated for Scots Pine at Its Northern Distribution Limit

  • Jeong-Wook SeoEmail author
  • Dieter Eckstein
  • Andrea Olbrich
  • Risto Jalkanen
  • Hannu Salminen
  • Uwe Schmitt
  • Jörg Fromm
Part of the Plant Cell Monographs book series (CELLMONO, volume 20)


The growth of trees is a spectacular and exposed process based on a highly interlinked complex of hidden and cryptic metabolic and signaling pathways not yet fully understood. In this chapter, we focus on a sequence of studies on Scots pine as an example tree species during the past 10 years in the north of Finland. We particularly compare annual height growth and annual growth in girth in the long term. Moreover, we give attention to the chronological coherence between the growth in height and girth during a growing season. Finally, we go down on the cellular level and screen various variables of the water conducting cells for their suitability as climatic proxies.

Girth growth is promoted by a warm current summer and height growth by a warm preceding summer. Within a growing season, growth in height and girth culminates in the second half of June, clearly before the warmest period of the year in the second half of July. On the cellular level, it is concluded that diameter and wall thickness of earlywood tracheids are independent from one another and from tree-ring width and in consequence contain different climatic signals. These encouraging findings provide a strong rationale for further studies.


Tree Ring Radial Growth Height Growth Wood Formation Northern Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The studies were funded by the EU-projects PINE “Predicting Impacts on Natural Ecotones (EVK2 CT-2002-00136) and Millenium (Contract no: 017008) as well as by projects of the German Science Foundation (DFG) (Project nos FR 955/16-1 and WI 2680/2-1) and the Academy of Finland (SA138937).


  1. Aalto T, Jalkanen R (1998) The needle trace method. Finnish Forest Research Institute, Research Papers 681, 36 pGoogle Scholar
  2. Abe H, Nakai T, Utsuma Y, Kagawa A (2003) Temporal water stress and wood formation in Cryptomeria japonica. Tree Physiol 23:859–863PubMedCrossRefGoogle Scholar
  3. Aloni R (2013) The role of hormones in controlling vascular differentiation. In: Fromm J (ed) Cellular aspects of wood formation. Springer, HeidelbergGoogle Scholar
  4. Antonova GF, Stasova VV (1997) Effects of environmental factors on wood formation in larch (Larix sibirica Ldb) stems. Trees 11:462–468Google Scholar
  5. Arend M, Fromm J (2007) Seasonal change in the drought response of wood cell development in poplar. Tree Physiol 27:985–992PubMedCrossRefGoogle Scholar
  6. Bailey JD, Harrington CA (2006) Temperature regulation of bud-burst phenology within and among years in a young Douglas-fir (Pseudotsuga menziesii) plantation in western Washington, USA. Tree Physiol 26:421–430PubMedCrossRefGoogle Scholar
  7. Barnett JR (ed) (1981) Xylem cell development. Castle House Publications, Turnbridge WellsGoogle Scholar
  8. Bauch J (1993) Mineralelementversorgung von Nadelbäumen und ihre Bedeutung für das Wachstum, vol 172. Mitt Bundesforschungsanst Forst-/Holzwirtschaft, Hamburg, pp 75–84Google Scholar
  9. Bäucker E, Bues C-T, Vogel M (1998) Radial growth dynamics of spruce (Picea abies) measured by micro-cores. IAWA J 19:301–309Google Scholar
  10. Briffa KR, Bartholin TS, Eckstein D, Jones PD, Karlen W, Schweingruber FH, Zetterberg P (1990) A 1400-year tree-ring record of summer temperature in Fennoscandia. Nature 346:434–439CrossRefGoogle Scholar
  11. Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shivatov SG, Vaganov EA (1998) Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391:678–682CrossRefGoogle Scholar
  12. Carlquist S (1975) Ecological strategies of xylem evolution. University of California Press, Berkeley, CAGoogle Scholar
  13. Carrer M, Urbinati C (2006) Long-term change in the sensitivity of tree-ring growth to climate forcing in Larix decidua. New Phytol 170:861–872PubMedCrossRefGoogle Scholar
  14. D’Arrigo R, Wilson R, Liepert B, Cherubini P (2008) On the ‘divergence problem’ in northern forests: a review of the tree-ring evidence and possible causes. Glob Planet Change 60:289–305CrossRefGoogle Scholar
  15. Denne MP, Dodd RS (1981) The environmental control of xylem differentiation. In: Barnett JR (ed) Xylem cell development. Castle House Publications, Turnbridge Wells, pp 236–255Google Scholar
  16. Deslauriers A, Morin H (2005) Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees 19:402–408CrossRefGoogle Scholar
  17. DeSoto L, De la Cruz M, Fonti P (2011) Intra-annual patterns of tracheid size in the Mediterranean tree Juniperus thurifera as an indicator of seasonal water stress. Can J For Res 41:1280–1294CrossRefGoogle Scholar
  18. Driscoll W, Wiles GC, D’Arrigo RD, Wilmking M (2005) Divergent tree growth response to recent climatic warming, Lake Clark National Park and Preserve, Alaska. Geophys Res Lett 32:L20703. doi: 10.1029/2005GL024258 CrossRefGoogle Scholar
  19. Eckstein D (1983) Biological basis of dendrochronology, vol 141. Mitt Bundesforschungsanst Forst-/Holzwirtschaft, Hamburg, pp 11–20Google Scholar
  20. Eckstein D, Krause C (1989) Dendroecological studies on spruce trees to monitor environmental changes around Hamburg. IAWA Bull 10:175–182Google Scholar
  21. Eckstein D, Liese W (1975) Veränderungen der Holzstruktur bei rauchgeschädigten Fichten. IX Intern IUFRO-meeting on air pollution and forestry, Mariánská Lázne, Czechoslovakia, 15–18 Oct 1974; Prague 1975, pp 205–214Google Scholar
  22. Eckstein D, Schmidt B (1974) Dendroklimatologische Untersuchungen an Stieleichen aus dem maritimen Klimagebiet Schleswig-Holsteins. Angew Bot 48:371–383Google Scholar
  23. Eckstein D, Frisse E, Quiehl F (1977) Holzanatomische Untersuchungen zum Nachweis anthropogener Einflüsse auf die Umweltbedingungen einer Rotbuche. Angew Bot 51:47–56Google Scholar
  24. Eilmann B, Weber P, Rigling A, Eckstein D (2006) Growth reaction of Pinus sylvestris L. and Quercus pubescens Willd. to drought years on a dry site in Valais, Switzerland. Dendrochronologia 23:121–132CrossRefGoogle Scholar
  25. Eilmann B, Zweifel R, Buchmann N, Graf-Pannatier W, Rigling A (2011) Drought alters timing, quantity, and quality of wood formation in Scots pine. J Exp Bot 62:2763–2771PubMedCrossRefGoogle Scholar
  26. Esper J, Büntgen U, Timonen M, Frank DC (2012) Variability and extremes of northern Scandinavian summer temperatures over the past two millennia. Glob Planet Change 88–89:1–9CrossRefGoogle Scholar
  27. Fonti P, Jansen S (2012) Xylem plasticity in response to climate. New Phytol 195:734–736PubMedCrossRefGoogle Scholar
  28. Fonti P, Solomonoff N, García-Gonzáles I (2007) Earlywood vessels of Castanea sativa record temperature before their formation. New Phytol 173:562–570PubMedCrossRefGoogle Scholar
  29. Fonti P, von Arx G, García-Gonzáles I, Eilmann B, Sass-Klaassen U, Gärtner H, Eckstein D (2010) Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol 185:42–53PubMedCrossRefGoogle Scholar
  30. Fritts HC (1976) Tree rings and climate. Academic, LondonGoogle Scholar
  31. Fromm J (2010) Wood formation of trees in relation to potassium and calcium nutrition. Tree Physiol 30:1140–1147PubMedCrossRefGoogle Scholar
  32. Fromm J (2013) Xylem development in trees: from cambial divisions to mature wood cells. In: Fromm J (ed) Cellular aspects of wood formation. Springer, HeidelbergCrossRefGoogle Scholar
  33. García-Gonzáles I, Eckstein D (2003) Climate signal of earlywood vessels of oak on a maritime site. Tree Physiol 23:497–504CrossRefGoogle Scholar
  34. García-Gonzáles I, Fonti P (2008) Ensuring a representative sample of earlywood vessels for dendroecological studies: an example from two ring-porous species. Trees 22:237–244CrossRefGoogle Scholar
  35. Gartner BL, Aloni R, Funada R, Lichtfuss-Gautier AN, Roig FA (2002) Clues for dendrochronology from studies of wood structure and function. Dendrochronologia 20:53–61CrossRefGoogle Scholar
  36. Gindl W (2001) Cell-wall lignin content related to tracheid dimensions in drought sensitive Austrian pine (Pinus nigra Arnold). IAWA J 22:113–120Google Scholar
  37. Gričar J, Zupančič M, Čufar K, Oven P (2007) Wood formation in Norway spruce (Picea abies) studied by pinning and intact tissue sampling method. Wood Research 52:1–10Google Scholar
  38. Grudd H (2008) Torneträsk tree-ring width and density AD 500–240: a test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Clim Dyn 31:843–857CrossRefGoogle Scholar
  39. Gurskaya MA, Shiyatov SG (2006) Distribution of frost injuries in the wood of conifers. Russ J Ecol 37:7–12CrossRefGoogle Scholar
  40. Gurskaya MA, Hallinger M, Eckstein D, Wilmking M (2012) Extreme cold summers in western Siberia, concluded from light-rings in the wood of conifers. Phyton 52:101–119Google Scholar
  41. Häkkinen R, Linkosalo T, Hari P (1995) Methods for combining phenological time series: application to bud burst in birch (Betula pendula) in Central Finland for the period 1896–1995. Tree Physiol 15:721–726PubMedCrossRefGoogle Scholar
  42. Hannerz M (1999) Evaluation of temperature models for predicting bud burst in Norway spruce. Can J For Res 29:9–19CrossRefGoogle Scholar
  43. Hartig R (1885) Das Holz der deutschen Nadelwaldbäume. Verlag von Julius Springer, Berlin, 147 pCrossRefGoogle Scholar
  44. Heide OM (1985) Physiological aspects of climatic adaptation in plants with special reference to high-latitude environments. In: Kaurin Å, Junttila O, Nilsen J (eds) Plant production in the North. Norwegian University Press, Tromsø, pp 1–12Google Scholar
  45. Helama S, Timonen M, Holopainen J, Ogurtsov MG, Mielikäinen K, Eronen M, Lindholm M, Meriläinen J (2009) Summer temperature variations in Lapland during the medieval warm period and the Little Ice Age relative to natural instability of thermohaline circulation on multi-decadal and multi-centennial scales. J Quat Sci 24:450–456CrossRefGoogle Scholar
  46. Hicks S, Eckstein D, Schmitt U, Tuovinen M, Jalkanen R, McCarroll D, Pawellek F, Edouard J-L, Gagen M, Birks H, Serres R, Hyvärinen H, Nivala V (2000) Forest response to environmental stress at timberlines: sensitivity of Northern Alpine and Mediterranean forests to climate. In: European climate science conference, Vienna, Austria, 19–23 Oct 1998, 9 pGoogle Scholar
  47. Jalkanen R, Tuovinen M (2001) Annual needle production and height growth: better climate predictors than radial growth at treeline? Dendrochronologia 19:39–44Google Scholar
  48. Jalkanen R, Pensa M, Salminen H (2007) Development of Scots pine in the changing environment of the northern boreal zone in Finland. In: Taulavuori E, Taulavuori K (eds) Physiology of northern plants under changing environment. Research Signpost, Kerala, India, pp 271–289Google Scholar
  49. Jost L (1893) Ueber Beziehungen zwischen der Blattentwicklung und der Gefässbildung in der Pflanze. Bot Ztg 51:89–138Google Scholar
  50. Kalela-Brundin M (1999) Climatic information from tree-rings of Pinus sylvestris L and a reconstruction of summer temperatures back to AD 1500 in Femundsmarka, eastern Norway, using partial least squares regression (PLS) analysis. Holocene 9:59–77CrossRefGoogle Scholar
  51. Karlsson PS (1989) In situ photosynthetic performance of four coexisting dwarf shrubs in relation to light in a subarctic woodland. Funct Ecol 3:481–487CrossRefGoogle Scholar
  52. Kern Z, Popa I, Varga Z, Széles É (2009) Degraded temperature sensitivity of a stone pine chronology explained by dendrochemical evidences. Dendrochronologia 27:121–128CrossRefGoogle Scholar
  53. Kimmins JP (1987) Forest ecology. Macmillan, New York, pp 130–147Google Scholar
  54. Kirchhefer AJ (2001) Reconstruction of summer temperatures from tree rings of Scots pine (Pinus sylvestris L.) in coastal northern Norway. Holocene 11:41–52CrossRefGoogle Scholar
  55. Kirdyanov A, Hughes M, Vaganov E, Schweingruber F, Silkin P (2003) The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic. Trees 17:61–69CrossRefGoogle Scholar
  56. Knigge W, Schulz H (1961) Einfluss der Jahreswitterung 1959 auf Zellartenverteilung, Faserlänge und Gefäßweite verschiedener Holzarten. Holz Roh-/Werkstoff 19:293–303CrossRefGoogle Scholar
  57. Kozlowski TT (1971) Growth and development of trees, vol I and II. Academic, New YorkGoogle Scholar
  58. Larson PR (1994) The vascular cambium – development and structure. Springer, BerlinCrossRefGoogle Scholar
  59. Liang E, Eckstein D (2006) Light rings in Chinese pine (Pinus tabulaeformis) in semiarid areas of north China and their palaeo-climatological potential. New Phytol 171:783–791PubMedCrossRefGoogle Scholar
  60. Lindholm M, Aalto T, Jalkanen R, Salminen H, Ogurtsov M (2011) The height-increment record of summer temperature extended over the last millennium in Fennoscandia. Holocene 21:319–326CrossRefGoogle Scholar
  61. Linkosalo T, Carter TR, Häkkinen R, Hari P (2000) Predicting spring phenology and frost damage risk of Betula spp. under climatic warming: a comparison of two models. Tree Physiol 20:1175–1182PubMedCrossRefGoogle Scholar
  62. Liu B, Li Y, Eckstein D, Zhu L, Dawadi B, Liang E (2013) Has an extending growing season any effect on the growth of Smith fir at the timberline on the southeastern Tibetan Plateau. Trees 27:1432–2285. doi: 10.1007/s00468-012-0819-z Google Scholar
  63. Loris K (1981) Dickenwachstum von Zirbe, Fichte und Lärche an der alpinen Waldgrenze/Patscherkofel. Mitt Forstl Bundesvers Wien 152:417–441Google Scholar
  64. Mäkinen H, Seo J-W, Nöid P, Schmitt U, Jalkanen R (2008) Seasonal dynamics of wood formation: a comparison between pinning, microcoring and dendrometer measurements. Eur J For Res 127:235–245CrossRefGoogle Scholar
  65. Mariaux A (1967–1968) Les cernes dans les bois tropicaux africains, nature et périodicité. Bois et Forêts des Tropiques No 113:3–14; No 114:23–37Google Scholar
  66. McCarroll D, Jalkanen R, Hicks S, Tuovinen M, Gagen M, Pawellek F, Eckstein D, Schmitt U, Autio J, Heikkinen O (2003) Multiproxy dendroclimatology: a pilot study in northern Finland. Holocene 13:831–841CrossRefGoogle Scholar
  67. McCarroll D, Tuovinen M, Campbell R, Gagen M, Grudd H, Jalkanen R, Loader NJ, Robertson I (2011) A critical evaluation of multi-proxy dendroclimatology in northern Finland. J Quat Sci 26:7–14CrossRefGoogle Scholar
  68. Mikola P (1962) Temperature and tree growth near the northern timberline. In: Kozlowski TT (ed) Tree growth. Ronald, New York, pp 265–287Google Scholar
  69. Mork E (1928) Die Qualität des Fichtenholzes unter besonderer Rücksichtnahme auf Schleif- und Papierholz. Der Papier-Fabrikant 26:741–747Google Scholar
  70. Munro MAR, Brown PM, Hughes MK, Garcia EMR (1996) Image-analysis of tracheid dimensions for dendrochronological use. In: Dean JS, Meko DM, Swetnam TW (eds) Tree rings, environment, and humanity. Proceedings of an international conference, Tucson, AZ, 17–21 May 1994. Radiocarbon, Department of Geosciences, University of Arizona, pp 843–851Google Scholar
  71. Nola P (1996) Climatic signal in earlywood and latewood of deciduous oaks in northern Italy. In: Dean JS, Meko DM, Swetnam TW (eds) Tree rings, environment, and humanity. Proceedings of an international conference, Tucson, AZ, 17–21 May 1994. Radiocarbon, Department of Geosciences, University of Arizona, pp 249–258Google Scholar
  72. Oberhuber W, Kofler W, Pfeifer K, Seeber A, Gruber A, Wieser G (2008) Long-term changes in tree-ring/climate relationships at Mt. Patscherkofel (Tyrol, Austria) since the mid-1980s. Trees 22:31–40PubMedCrossRefGoogle Scholar
  73. Olano JM, Arzac A, García-Cervigón AI, von Arx G, Rozas V (2013) New star on the stage: amount of ray parenchyma in tree rings shows a link to climate. New Phytol 188Google Scholar
  74. Oribe Y, Funada R, Kubo T (2003) Relationships between cambial activity, cell differentiation and the localization of starch in storage tissues around the cambium in locally heated stems of Abies sachalinensis (Schmidt) Masters. Trees 17:185–192Google Scholar
  75. Panyushkina P, Hughes M, Vaganov E, Munro M (2003) Summer temperature in northeastern Siberia since 1642 reconstructed from tracheid dimensions and cell numbers of Larix cajanderi. Can J For Res 33:1905–1914CrossRefGoogle Scholar
  76. Park WK (1990) Development of anatomical tree-ring chronologies from southern Arizona conifers using image analysis. PhD dissertation, University of Arizona, Tucson, AZGoogle Scholar
  77. Parker ML, Hennoch WES (1971) The use of Engelmann spruce latewood density for dendrochronological purposes. Can J For Res 1:90–98CrossRefGoogle Scholar
  78. Partanen J, Koski V, Hänninen H (1998) Effects of photoperiod and temperature on the timing of bud burst in Norway spruce (Picea abies). Tree Physiol 18:811–816PubMedCrossRefGoogle Scholar
  79. Pensa M, Salminen H, Jalkanen R (2005) A 250-year-long height-increment chronology for Pinus sylvestris at the northern coniferous timberline: a novel tool for reconstructing past summer temperature? Dendrochronologia 22:75–81CrossRefGoogle Scholar
  80. Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523PubMedCrossRefGoogle Scholar
  81. Polge H (1963) L’analyse densitométrique de clichés radiographiques: Une nouvelle méthode de détermination de la texture du bois. Annales de l’Ecole Nationale des Eaux et Forêts de la Station de Recherches et Experiences 20:530–581Google Scholar
  82. Prislan P, Koch G, Čufar K, Gričar J, Schmitt U (2009) Topochemical investigations of cell walls in developing xylem of beech (Fagus sylvatica L.). Holzforschung 63:482–490CrossRefGoogle Scholar
  83. Repo T, Zhang G, Ryyppö A, Rikala R, Vuorinen M (2000) The relation between growth cessation and frost hardening in Scots pines of different origins. Trees 14:456–464CrossRefGoogle Scholar
  84. Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti R, Borghetti M (2006) Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol 170:301–310PubMedCrossRefGoogle Scholar
  85. Rossi S, Deslauriers A, Gričar J, Seo J-W, Rathgeber CBK, Anfodillo T, Morin H, Levanič T, Oven P, Jalkanen R (2008) Critical temperatures for xylogenesis in conifers of cold climates. Glob Ecol Biogeogr 17:696–707CrossRefGoogle Scholar
  86. Rossi S, Morin H, Deslauriers A (2012) Causes and correlations in cambium phenology: towards an integrated framework of xylogenesis. Environ Exp Bot 63:2117–2163CrossRefGoogle Scholar
  87. Salminen H, Jalkanen R (2004) Does current summer temperature contribute to the final shoot length on Pinus sylvestris? A case study at the northern conifer timberline. Dendrochronologia 21:79–84CrossRefGoogle Scholar
  88. Salminen H, Jalkanen R (2007) Intra-annual height increment of Pinus sylvestris at high latitudes in Finland. Tree Physiol 27:1347–1353PubMedCrossRefGoogle Scholar
  89. Salminen H, Jalkanen R, Lindholm M (2009) Summer temperature affects the ratio of radial and height growth of Scots pine in northern Finland. Ann For Sci 66:810CrossRefGoogle Scholar
  90. Sarvas R (1972) Investigations on the annual cycle of development of forest trees. Active period. Comm Inst For Fenn 76:1–110Google Scholar
  91. Sass U, Eckstein D (1992) The annual vessel area of beech as an ecological indicator. Lundqua Rep 34:281–285Google Scholar
  92. Savidge RA, Barnett JR, Napier R (eds) (2000) Cell and molecular biology of wood formation. BIOS Scientific Publishers, OxfordGoogle Scholar
  93. Schleser GH, Helle G, Lücke A, Vos H (1999) Isotope signals as climate proxies: the role of transfer functions in the study of terrestrial archives. Quat Sci Rev 18:927–943CrossRefGoogle Scholar
  94. Schmitt U, Jalkanen R, Eckstein D (2004) Cambium dynamics of Pinus sylvestris and Betula spp. in the northern boreal forest in Finland. Silva Fenn 38:167–178Google Scholar
  95. Schulte PJ (2012) Vertical and radial profiles in tracheid characteristics along the trunk of Douglas-fir trees with implications for water transport. Trees 26:421–433CrossRefGoogle Scholar
  96. Schweingruber FH (2007) Wood structure and environment. Springer, BerlinGoogle Scholar
  97. Schweingruber FH, Fritts HC, Bräker OU, Drew LG, Schär E (1978) The x-ray technique as applied to dendroclimatology. Tree Ring Bull 38:61–91Google Scholar
  98. Seo J-W, Eckstein D, Schmitt U (2007) The pinning method: from pinning to data preparation. Dendrochronologia 25:79–86CrossRefGoogle Scholar
  99. Seo J-W, Eckstein D, Jalkanen R, Rickebusch S, Schmitt U (2008) Estimating the onset of cambial activity in Scots pine in northern Finland by means of the heat-sum approach. Tree Physiol 28:105–112PubMedCrossRefGoogle Scholar
  100. Seo J-W, Salminen H, Jalkanen R, Eckstein D (2010) Chronological coherence between intra-annual height and radial growth of Scots pine (Pinus sylvestris L.) in the northern boreal zone of Finland. Balt For 16:57–65Google Scholar
  101. Seo J-W, Eckstein D, Jalkanen R, Schmitt U (2011) Climatic control of intra- and inter-annual wood-formation dynamics of Scots pine in northern Finland. Environ Exp Bot 72:422–431CrossRefGoogle Scholar
  102. Seo J-W, Aalto T, Jalkanen R, Eckstein D, Schmitt U, Fromm J (2012a) Bud break and intra-annual height growth dynamics of saplings and pole-stage trees of Scots pine: case study for a boreal forest in northern Finland. Balt For 18:144–149Google Scholar
  103. Seo J-W, Eckstein D, Jalkanen R (2012b) Screening various variables of cellular anatomy of Scots pines in subarctic Finland for climatic signals. IAWA J 33:417–429Google Scholar
  104. Sirén G (1961) Skogsgränstallen som indikator för klimafluktuationerna in norra Fennoskandien under historisk tid. Comm Inst For Fenn 53:1–66Google Scholar
  105. Speer JH (2010) Fundamentals of tree-ring research. University of Arizona Press, Tucson, AZGoogle Scholar
  106. Tardif J (1996) Earlywood, latewood and total ring width of a ring-porous species (Fraxinus nigra Marsh) in relation to climatic and hydrologic factors. In: Dean JS, Meko DM, Swetnam TW (eds) Tree rings, environment, and humanity. Proceedings of an international conference, Tucson, AZ, 17–21 May 1994. Radiocarbon, Department of Geosciences, University of Arizona, pp 315–324Google Scholar
  107. Taulavuori K, Sarala M, Taulavuori E (2010) Growth response of trees to Arctic light environment. Prog Bot 71:157–168Google Scholar
  108. Tomppo E, Tuomainen T, Heikkinen J, Henttonen H, Ihalainen A, Korhonen KT, Mäkelä H, Tonteri T (2005) Lapin metsäkeskuksen alueen metsävarat 1970–2003 [Forest resources in Lapland, 1970–2003]. Metsätieteen aikakauskija 2B:199–287Google Scholar
  109. Tuovinen M, McCarroll D, Grudd H, Jalkanen R, Los S (2009) Spatial and temporal stability of the climatic signal in northern Fennoscandian pine tree-ring width and maximum density. Boreas 38:1–12CrossRefGoogle Scholar
  110. Uggla C, Magel E, Moritz T, Sundberg B (2001) Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in Scots pine. Plant Physiol 125:2029–2039PubMedCrossRefGoogle Scholar
  111. Vaganov EA, Terskov IA (1977) Tree growth analysis by tree-ring structure. Nauka Publishing House, Novosibirsk, USSR (in Russian)Google Scholar
  112. Vaganov EA, Shashkin AV, Sviderskaya IV, Vysotskaya LG (1985) Histometrical analysis of woody plant growth. Nauka Publishing House, Novosibirsk, USSR (in Russian)Google Scholar
  113. Vaganov EA, Naurazhaev MM, Schweingruber FH, Briffa KR, Moell M (1996) An 840-year tree-ring width chronology for Taimir as an indicator of summer temperature changes. Dendrochronologia 14:193–205Google Scholar
  114. Venäläinen A, Tuomenvirta H, Heikinheimo M, Kellomäki S, Peltola H, Strandman H, Väisänen H (2001) Impact of climate change on soil frost under snow cover in a forested landscape. Clim Res 17:63–72CrossRefGoogle Scholar
  115. von Wilpert K (1991) Intra-annual variation of radial tracheid diameters as monitor of site specific water stress. Dendrochronologia 9:95–113Google Scholar
  116. Watson E, Luckman BH (2004) Tree-ring-based mass-balance estimates for the past 300 years at Peyto Glacier, Alberta, Canada. Quat Res 62:9–18CrossRefGoogle Scholar
  117. Wieser G, Matyssek R, Luzian R, Zwerger P, Pindur P, Oberhuber W, Gruber A (2009) Effects of atmospheric and climate change at the timberline of the Central European Alps. Ann For Sci 66:402PubMedCrossRefGoogle Scholar
  118. Wilmking M, Juday GP (2005) Longitudinal variation of radial growth of Alaska’s northern treeline – recent changes and possible scenarios for the 21st century. Glob Planet Change 47:282–300CrossRefGoogle Scholar
  119. Wilmking M, Juday GP, Barber VA, Zald HSJ (2004) Recent climate warming forces opposite growth responses of white spruce at treeline in Alaska through temperature threshold. Glob Change Biol 10:1724–1736CrossRefGoogle Scholar
  120. Wilmking M, Sanders TGM, Zhang Y, Kenter S, Holzkämper S, Grittenden PD (2012) Effects of climate, site conditions, and seed quality on recent treeline dynamics in NW Russia: permafrost and lack of reproductive success hamper treeline advance? Ecosystems 15:1053. doi: 10.1007/s10021-012-9565-8 CrossRefGoogle Scholar
  121. Wilson R, Elling W (2004) Temporal instability in tree-growth/climate response in the lower Bavarian Forest region: implications for dendroclimatic reconstruction. Trees 18:19–28CrossRefGoogle Scholar
  122. Wimmer R (2002) Wood anatomical features in tree rings as indicators of environmental change. Dendrochronologia 20:21–36CrossRefGoogle Scholar
  123. Wodzicki TJ (1971) Mechanism of xylem differentiation in Pinus sylvestris L. J Exp Bot 22:670–687CrossRefGoogle Scholar
  124. Wolter KE (1968) A new method for marking xylem growth. For Sci 14:102–104Google Scholar
  125. Woodcock DW (1989) Climate sensitivity of wood-anatomical features of bur oak (Quercus macrocarpa). Can J For Res 19:639–644CrossRefGoogle Scholar
  126. Xu J, Lu J, Bao F, Evans R, Downes GM (2012a) Climate response of cell characteristics in tree rings of Picea crassifolia. Holzforschung. doi:10.1515/hf-2011-0144Google Scholar
  127. Xu J, Lu J, Bao F, Evans R, Downes G, Huang R, Zhao Y (2012b) Cellulose microfibril angle variation in Picea crassifolia tree rings improves climate signals on the Tibetan Plateau. Trees 26:1007–1016CrossRefGoogle Scholar
  128. Yasue K, Funada R, Kobayashi O, Ohtani J (2000) The effects of tracheid dimensions on variations in maximum density of Picea glehnii and relationships to climatic factors. Trees 14:223–229CrossRefGoogle Scholar
  129. Yonenobu H, Eckstein D (2006) Reconstruction of early spring temperature for central Japan from the tree-ring widths of Hinoki cypress and its verification by other proxy records. Geophys Res Lett 33:L10701. doi: 10.1029/2006GL026170 CrossRefGoogle Scholar
  130. Zahner R (1963) Internal moisture stress and wood formation in conifers. For Prod J 13:240–247Google Scholar
  131. Zimmermann MH (1964) The formation of wood in forest trees. Academic, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jeong-Wook Seo
    • 1
    Email author
  • Dieter Eckstein
    • 2
  • Andrea Olbrich
    • 2
  • Risto Jalkanen
    • 3
  • Hannu Salminen
    • 3
  • Uwe Schmitt
    • 4
  • Jörg Fromm
    • 2
  1. 1.University of Greifswald, Institute of Botany and Landscape EcologyGreifswaldGermany
  2. 2.Dept. of Wood Science, Division Wood BiologyUniversity of HamburgHamburgGermany
  3. 3.Finnish Forest Research Institute, Northern Regional UnitRovaniemiFinland
  4. 4.Thünen Institute of Wood ResearchHamburgGermany

Personalised recommendations