New Insights into Heartwood and Heartwood Formation

  • Andreas Kampe
  • Elisabeth MagelEmail author
Part of the Plant Cell Monographs book series (CELLMONO, volume 20)


The formation of true or obligate heartwood in the innermost living xylem tissues of many tree species is one of the most important ecological and economical secondary differentiation processes. Natural durability, biological, technological, and esthetic parameters of wood and its products depend on the presence, quality, and quantity of heartwood extractives. This chapter presents the actual knowledge about heartwood formation. The main focus is on the biochemical and molecular basis of heartwood formation as well as on new developments in using heartwood extractives as biocides or as pharmaceuticals. Biochemical studies, corroborated by gene expression studies, prove that (1) season of heartwood formation starts in summer, reaches a maximum in early fall, and ceases during dormancy; (2) the transient shift in metabolism towards an enhanced secondary metabolism is regulated by gene expression and protein de novo synthesis; and (3) programmed cell death (PCD) of parenchyma cells during heartwood formation shares some similarities with PCD during xylem formation. However, more work is needed (1) to find more similarities and/or differences between the two types of heartwood formation (Robinia-Type and Juglans-Type), (2) to elucidate the involvement of axial and ray parenchyma cells, and (3) to learn more about regulation of heartwood formation, such as the role of transcription factors or phytohormones.


Transition Zone Parenchyma Cell Phenylalanine Ammonia Lyase Black Locust Robinia Pseudoacacia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abe H, Watanabe U, Yoshida K, Kuroda K, Zhang CH (2011) Changes in organelle and DNA quality, quantity, and distribution in the wood of Cryptomeria japonica over long-term storage. IAWA J 32:263–272Google Scholar
  2. Achari B, Dutta PK, Roy SK, Prarthana Chakraborty P, Sengupta J, Bandyopadhyay D, Maity JK, Khan IA, Ding Y, Ferreira D (2012) Fluorescent pigment and phenol glucosides from the heartwood of Pterocarpus marsupium. J Nat Prod 75:655–660PubMedCrossRefGoogle Scholar
  3. Anonymous (1957) International glossary of terms used in wood anatomy (prepared by the International Association of Wood Anatomists). Trop Woods 107:1–36Google Scholar
  4. Augusto L, Bert D (2005) Estimating stemwood nutrient concentration with an increment borer: a potential source of error. Forestry 78:451–455. doi: 10.1093/forestry/cpi041 CrossRefGoogle Scholar
  5. Bamber RK (1976) Heartwood, its function and formation. Wood Sci Technol 10:1–8. doi: 10.1007/bf00376379 CrossRefGoogle Scholar
  6. Bamber RK, Fukazawa K (1985) Sapwood and heartwood: a review. For Abstr 46:567–580Google Scholar
  7. Baqui SA, Shah JJ (1985) Histoenzymatic studies in wood of Acacia auriculiformis Cunn. during heartwood formation. Holzforschung 39:311–320CrossRefGoogle Scholar
  8. Bergström B (2003) Chemical and structural changes during heartwood formation in Pinus sylvestris. Forestry 76:45–53. doi: 10.1093/forestry/76.1.45 CrossRefGoogle Scholar
  9. Bergström B, Gustafsson G, Gref R, Ericsson A (1999) Seasonal changes of pinosylvin distribution in the sapwood/heartwood boundary of Pinus sylvestris. Trees 14:65–71. doi: 10.1007/pl00009754 Google Scholar
  10. Beritognolo I, Magel E, Abdel-Latif A, Charpentier JP, Jay-Allemand C, Breton C (2002) Expression of genes encoding chalcone synthase, flavanone 3-hydroxylase and dihydroflavonol 4-reductase correlates with flavanol accumulation during heartwood formation in Juglans nigra. Tree Physiol 22:291–300. doi: 10.1093/treephys/22.5.291 PubMedCrossRefGoogle Scholar
  11. Bertaud F, Holmbom B (2004) Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Sci Technol 38:245–256CrossRefGoogle Scholar
  12. Bhat K, Patel J (1980) Nuclear studies in relation to heartwood formation in Ougeinia oojeinensis Roxb. and Garuga pinnata Roxb. Caryologia 33:519–526Google Scholar
  13. Bhat K, Patel J (1982) Nuclear behaviour during heartwood formation in Acacia auriculiformis A. Cann. Proc Indian Acad Sci B Part 3 Plant Sci 91:107–114. doi: 10.1007/bf03167114 Google Scholar
  14. Bieker D, Rust S (2010) Non-Destructive estimation of sapwood and heartwood width in Scots pine (Pinus sylvestris L.). Silva Fennica 44:267–273Google Scholar
  15. Bito N, Nakada R, Fukatsu E, Matsushita Y, Fukushima K, Imai T (2011) Clonal variation in heartwood norlignans of Cryptomeria japonica: evidence for independent control of agatharesinol and sequirin C biosynthesis. Ann For Sci 68:1049–1056. doi: 10.1007/s13595-011-0118-7 CrossRefGoogle Scholar
  16. Burtin P, Jay-Allemand C, Charpentier JP, Janin G (1998) Natural wood colouring in Juglans sp. (J. nigra, J. regia and hybrid J. nigra 23 × J. regia) depends on native phenolic compounds accumulated in the transition zone between sapwood and heartwood. Trees 12:258–264Google Scholar
  17. Burtin P, Jay-Allemand C, Charpentier JP, Janin G (2000) Modifications of hybrid walnut (Juglans nigra 23 × Juglans regia) wood colour and phenolic composition under various steaming conditions. Holzforschung 54:33–38CrossRefGoogle Scholar
  18. Bush D, McCarthy K, Meder R (2011) Genetic variation of natural durability traits in Eucalyptus cladocalyx (sugar gum). Ann For Sci 68:1057–1066. doi: 10.1007/s13595-011-0121-z CrossRefGoogle Scholar
  19. Chakravarty P, Sen Sarma N, Sarma HP (2010a) Biosorption of cadmium(II) from aqueous solution using heartwood powder of Areca catechu. Chem Eng J 162:949–955CrossRefGoogle Scholar
  20. Chakravarty P, Sen Sarma N, Sarma HP (2010b) Removal of lead(II) from aqueous solution using heartwood of Areca catechu powder. Desalination 256(1–3):16–21CrossRefGoogle Scholar
  21. Chakravarty P, Deka DC, Sarma NS, Sarma HP (2012) Removal of copper (II) from wastewater by heartwood powder of Areca catechu: kinetic and equilibrium studies. Desalin Water Treat 40:194–203. doi: 10.5004/dwt.2012.2920 CrossRefGoogle Scholar
  22. Chang ST, Wang SY, Kuo YH (2003) Resources and bioactive substances from Taiwania (Taiwania cryptomerioides). J Wood Sci 49:0001–0004. doi: 10.1007/s100860300000 CrossRefGoogle Scholar
  23. Chavez KJ, Feng XH, Fanders JA, Rodriguez E, Schroeder FC (2011) Spirocyclic lignans from Guaiacum (Zygophyllaceae) induce apoptosis in human breast cancer cell lines. J Nat Prod 74:1293–1297. doi: 10.1021/np100891y PubMedCrossRefGoogle Scholar
  24. Chen H, Li J, Wu Q, Niu XT, Tang MT, Guan XL, Li J, Yang RY, Deng SP, Su XJ (2012) Anti-HBV activities of Streblus asper and constituents of its roots. Fitoterapia 83:643–649. doi: 10.1016/j.fitote.2012.01.009 PubMedCrossRefGoogle Scholar
  25. Cheng SS, Liu JY, Chang EH, Chang ST (2008) Antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi. Bioresour Technol 99:5145–5149. doi: 10.1016/j.biortech.2007.09.013 PubMedCrossRefGoogle Scholar
  26. Choi C, Choi Y, Cha MR, Kim Y, Yon G, Kim YK, Choi S, Kim Y, Ryu S (2009) Antitumor components isolated from the heartwood extract of Dalbergia odorifera. J Korean Soc Appl Biol Chem 52:375–379. doi: 10.3839/jksabc.2009.067 CrossRefGoogle Scholar
  27. Clark AM, McChesney JD, Adams RP (1990) Antimicrobial properties of heartwood, bark/sapwood and leaves of Juniperus species. Phytother Res 4:15–19CrossRefGoogle Scholar
  28. Da Silva CA, Bacellar Monteiro MB, Brazolin S, Carballeira Lopez GA, Richter A, Braga MR (2007) Biodeterioration of brazilwood Caesalpinia echinata Lam. (Leguminosae-Caesalpinioideae) by rot fungi and termites. Int Biodeterior Biodegradation 60:285–292CrossRefGoogle Scholar
  29. De Aza CH, Turrion MB, Pando V, Bravo F (2011) Carbon in heartwood, sapwood and bark along the stem profile in three mediterranean Pinus species. Ann For Sci 68:1067–1076. doi: 10.1007/s13595-011-0122-y CrossRefGoogle Scholar
  30. De Filippis L, Magel E (1998) Differences in genomic DNA extracted from bark and from wood of different zones in Robinia trees using RAPD-PCR. Trees 12:377–384Google Scholar
  31. De Filippis L, Magel E (2012) Identification of biochemical differences between the sapwood and transition zone in Robinia pseudoacacia L. by differential display of proteins. Holzforschung 66:543–549. doi: 10.1515/hf.2011.178 CrossRefGoogle Scholar
  32. Dehon L, Macheix JJ, Durand M (2002) Involvement of peroxidases in the formation of the brown coloration of heartwood in Juglans nigra. J Exp Bot 53:303–311. doi: 10.1093/jexbot/53.367.303 PubMedCrossRefGoogle Scholar
  33. Déjardin A, Laurans F, Arnaud D, Breton C, Pilate G, Leplé JC (2010) Wood formation in angiosperms. C R Biol 333:325–334. doi: 10.1016/j.crvi.2010.01.010 PubMedCrossRefGoogle Scholar
  34. Dellus V, Mila I, Scalbert A, Menard C, Michon V, Herve du Penhoat CLM (1997a) Douglas-fir polyphenols and heartwood formation. Phytochemistry 45:1573–1578. doi: 10.1016/s0031-9422(97)00245-8 CrossRefGoogle Scholar
  35. Dellus V, Scalbert A, Janin G (1997b) Polyphenols and colour of Douglas fir heartwood. Holzforschung 51:291–295CrossRefGoogle Scholar
  36. Dungani R, Ul Haq Bhat I, Abdul Khalil HP, Naif A, Hermawan D (2012) Evaluation of antitermitic activity of different extracts obtained from Indonesian teakwood (Tectona grandis L.f.). BioResources 7:1452–1461Google Scholar
  37. Dünisch O, Richter HG, Koch G (2010) Wood properties of juvenile and mature heartwood in Robinia pseudoacacia L. Wood Sci Technol 44:301–313. doi: 10.1007/s00226-009-0275-0 CrossRefGoogle Scholar
  38. Duroux L, Delmotte F, Lancelin JM, Keravis G, Jay-Allemand C (1998) Insight into naphthoquinone metabolism: ß-glucosidase-catalysed hydrolysis of hydrojuglone ß-D-glucopyranoside. Biochem J 333:275–283PubMedGoogle Scholar
  39. Ekeberg D, Flæte PO, Eikenes M, Fongen M, Naess-Andresen CF (2006) Qualitative and quantitative determination of extractives in heartwood of Scots pine (Pinus sylvestris L.) by gas chromatography. J Chromatogr A 1109:267–272. doi: 10.1016/j.chroma.2006.01.027 PubMedCrossRefGoogle Scholar
  40. Eklund L, Klintborg A (2000) Ethylene, oxygen and carbon dioxide in woody stems during growth and dormancy. In: Savidge R, Barnett J, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scientific Publishers, OxfordGoogle Scholar
  41. Eller FJ, Clausen CA, Green F, Taylor SL (2010) Critical fluid extraction of Juniperus virginiana L. and bioactivity of extracts against subterranean termites and wood-rot fungi. Ind Crops Prod 32:481–485. doi: 10.1016/j.indcrop.2010.06.018 CrossRefGoogle Scholar
  42. Fengel D (1991) Chemical studies on the wood of Quebracho colorado (part 1). Holzforschung 45:259–263CrossRefGoogle Scholar
  43. Forrester DI, Collopy JJ, Morris JD (2010) Transpiration along an age series of Eucalyptus globulus plantations in southeastern Australia. For Ecol Manag 259:1754–1760. doi: 10.1016/j.foreco.2009.04.023 CrossRefGoogle Scholar
  44. Fukazawa K, Higuchi T (1966) Studies on the mechanism of heartwood formation. IV. RNA content in the ray parenchyma cells. J Jpn Wood Res Soc 12:221–226Google Scholar
  45. Galicki SJ, Davidson GR, Threlkeld ST (2008) Element mobility in bald cypress xylem. Tree Ring Res 64:39–46. doi: 10.3959/2007-7.1PD CrossRefGoogle Scholar
  46. Gang DR, Fujita M, Davin LB, Lewis NG (1998) The ‘abnormal lignins’: mapping heartwood formation through the lignan biosynthetic pathway. In: Lewis NG, Sarkanen S (eds) Lignin and lignan biosynthesis, vol 697. ACS Symposium Series, Washington, DCCrossRefGoogle Scholar
  47. Gartner BL (2002) Sapwood and inner bark quantities in relation to leaf area and wood density in Douglas-fir. IAWA J 23:267–285Google Scholar
  48. Gartner B, Moore JR, Gardiner BA (2004) Gas in stems: abundance and potential consequences for tree biomechanics. Tree Physiol 24:1239–1250PubMedCrossRefGoogle Scholar
  49. Gjerdrum P, Hoibo O (2004) Heartwood detection in Scots pine by means of heat-sensitive infrared images. Holz Roh- und Werkst 62:131–136. doi: 10.1007/s00107-004-0467-0 CrossRefGoogle Scholar
  50. Guleria S, Tiku AK, Singh G, Vyas D, Bhardwaj A (2011) Antioxidant activity and protective effect against plasmid DNA strand scission of leaf, bark, and heartwood extracts from Acacia catechu. J Food Sci 76:C959–C964. doi: 10.1111/j.1750-3841.2011.02284.x PubMedCrossRefGoogle Scholar
  51. Hashemi SKH, Latibari AJ (2011) Evaluation and identification of walnut heartwood extractives for protection of poplar wood. BioResources 6:59–69Google Scholar
  52. Hauch S, Magel E (1998) Extractable activities and protein content of sucrose-phosphate synthase, sucrose synthase and neutral invertase in trunk tissues of Robinia pseudoacacia L. are related to cambial wood production and heartwood formation. Planta 207:266–274. doi: 10.1007/s004250050482 CrossRefGoogle Scholar
  53. Hergert HL (1977) Secondary lignification in conifer trees. In: Cellulose Chemistry and Technology, vol 48. ACS Symposium Series. AMERICAN CHEMICAL SOCIETY, pp 227–243. doi: 10.1021/bk-1977-0048.ch016
  54. Higuchi T (1997) Biochemistry and molecular biology of wood. Springer, BerlinCrossRefGoogle Scholar
  55. Hillinger C, Holl W, Ziegler H (1996) Lipids and lipolytic enzymes in the trunkwood of Robinia pseudoacacia L. during heartwood formation. 1. Radial distribution of lipid classes. Trees 10:366–375. doi: 10.1007/bf02185640 Google Scholar
  56. Hillis WE (1987) Heartwood and tree exudates. Springer, BerlinCrossRefGoogle Scholar
  57. Höll W, Lendzian K (1973) Respiration in sapwood and heartwood of Robinia pseudoacacia. Phytochemistry 12:975–977. doi: 10.1016/0031-9422(73)85002-2 CrossRefGoogle Scholar
  58. Houle D, LaFleche MR, Duchesne L (2008) Sequential extractions of elements in tree rings of balsam fir and white spruce. Commun Soil Sci Plant Anal 39:1138–1146. doi: 10.1080/00103620801925836 CrossRefGoogle Scholar
  59. Huang Z, Meilan R, Woeste K (2009) A KNAT3-like homeobox gene from Juglans nigra L., JnKNAT3-like, highly expressed during heartwood formation. Plant Cell Rep 28:1717–1724. doi: 10.1007/s00299-009-0771-6 PubMedCrossRefGoogle Scholar
  60. Huang Z, Tsai CJ, Harding S, Meilan R, Woeste K (2010) A cross-species transcriptional profile analysis of heartwood formation in black walnut. Plant Mol Biol Rep 28:222–230. doi: 10.1007/s11105-009-0144-x CrossRefGoogle Scholar
  61. Huang Z, Surana P, Kihara D, Meilan R, Woeste K (2011) JnCML-like, an EF-hand motif-containing gene seasonally upregulated in the transition zone of black walnut (Juglans nigra L.). Am J Mol Biol 1:140–155CrossRefGoogle Scholar
  62. IAWA (1964) Multilingual glossary of terms used in wood anatomy. IAWA J 40:186Google Scholar
  63. Imai T, Tanabe K, Kato T, Fukushima K (2005) Localization of ferruginol, a diterpene phenol, in Cryptomeria japonica heartwood by time-of-flight secondary ion mass spectrometry. Planta 221:549–556. doi: 10.1007/s00425-004-1476-2 PubMedCrossRefGoogle Scholar
  64. Jeong SJ, Koh W, Kim B, Kim SH (2011) Are there new therapeutic options for treating lung cancer based on herbal medicines and their metabolites? J Ethnopharmacol 138:652–661. doi: 10.1016/j.jep.2011.10.018 PubMedCrossRefGoogle Scholar
  65. Jouin D, Tollier MT, Monties B (1988) Lignification of oak wood. I. Lignin determinations in sapwood and heartwood. Cellul Chem Technol 22:231–243Google Scholar
  66. Kadir R, Hale MD (2012) Comparative termite resistance of 12 Malaysian timber species in laboratory tests. Holzforschung 66:127–130. doi: 10.1515/hf.2011.116 CrossRefGoogle Scholar
  67. Kawamura F, Ramle SFM, Sulaiman O, Hashim R, Ohara S (2011) Antioxidant and antifungal activities of extracts from 15 selected hardwood species of Malaysian timber. Eur J Wood Wood Prod 69:207–212. doi: 10.1007/s00107-010-0413-2 CrossRefGoogle Scholar
  68. Ke D, Saltveit E Jr (1988) Plant hormone interaction and phenolic metabolism in the regulation of russet spotting in iceberg lettuce. Plant Physiol 88:1136–1140PubMedCrossRefGoogle Scholar
  69. Kijidani Y, Toyoumi A, Kitahara R, Fujimoto H (2011) Termite resistance and extractives distribution of sapwood and heartwood of Obi-Sugi cultivars (Cryptomeria japonica). Mokuzai Gakkaishi 57:195–202CrossRefGoogle Scholar
  70. Koch G (2004) Biologische und chemische Untersuchungen über Inhaltsstoffe im Holzgewebe von Buche (Fagus sylvatica L.) und Kirschbaum (Prunus serotina Borkh.) und deren Bedeutung für Holzverfärbungen. Mitteilungen der Bundesforschungsanstalt fürr Forst- und Holzwirtschaft. Nr. 216.Google Scholar
  71. Kollmann F, Keylwerth R, Kübler H (1951) Verfärbungen des Vollholzes und der Furniere bei der künstlichen Holztrocknung. Eur J Wood Wood Prod 9:383–390Google Scholar
  72. Kuroda K, Yamashita K, Fujiwara T (2009) Cellular level observation of water loss and the refilling of tracheids in the xylem of Cryptomeria japonica during heartwood formation. Trees 23:1163–1172. doi: 10.1007/s00468-009-0356-6 CrossRefGoogle Scholar
  73. Kwon M, Davin LB, Lewis NG (2001) In situ hybridization and immunolocalization of lignan reductases in woody tissues: implications for heartwood formation and other forms of vascular tissue preservation. Phytochemistry 57:899–914. doi: 10.1016/s0031-9422(01)00108-x PubMedCrossRefGoogle Scholar
  74. Lamlom SH, Savidge RA (2006) Carbon content variation in boles of mature sugar maple and giant sequoia. Tree Physiol 26:459–468PubMedCrossRefGoogle Scholar
  75. Latorraca JVF, Dünisch O, Koch G (2011) Chemical composition and natural durability of juvenile and mature heartwood of Robinia pseudoacacia L. An Acad Bras Cienc 83:1059–1068PubMedCrossRefGoogle Scholar
  76. Li B, Lee DS, Jeong GS, Kim YC (2012a) Involvement of heme oxygenase-1 induction in the cytoprotective and immunomodulatory activities of 6,4′-dihydroxy-7-methoxyflavanone in murine hippocampal and microglia cells. Eur J Pharmacol 674:153–162. doi: 10.1016/j.ejphar.2011.11.016 PubMedCrossRefGoogle Scholar
  77. Li LQ, Li J, Huang Y, Wu Q, Deng SP, Su XJ, Yang RY, Huang JG, Chen ZZ, Li S (2012b) Lignans from the heartwood of Streblus asper and their inhibiting activities to Hepatitis B virus. Fitoterapia 83:303–309. doi: 10.1016/j.fitote.2011.11.008 PubMedCrossRefGoogle Scholar
  78. Little NS, Schultz TP, Nicholas DD (2010) Termite-resistant heartwood. Effect of antioxidants on termite feeding deterrence and mortality. Holzforschung 64:395–398. doi: 10.1515/hf.2010.053 Google Scholar
  79. Lukmandaru G, Ashitani T, Takahashi K (2009) Color and chemical characterization of partially black-streaked heart-wood in teak (Tectona grandis). J For Res 20:377–380CrossRefGoogle Scholar
  80. Macfarlane C, Bond C, White DA, Grigg AH, Ogden GN, Silberstein R (2010) Transpiration and hydraulic traits of old and regrowth eucalypt forest in southwestern. Aust For Ecol Manage 260:96–105. doi: 10.1016/j.foreco.2010.04.005 CrossRefGoogle Scholar
  81. Magel E (2000) Biochemistry and physiology of heartwood formation. In: Savidge R, Barnett J, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scientific Publishers, OxfordGoogle Scholar
  82. Magel E (2002) Biochemistry and quantitative histochemistry of wood. In: Chaffey NJ (ed) Wood formation in trees: cell and molecular biology techniques. Taylor & Francis, London. doi: 10.1201/9780203166444.ch14 Google Scholar
  83. Magel E, Höll W (1993) Storage carbohydrates and adenine nucleotides in trunks of Fagus sylvatica L. in relation to discolored wood. Holzforschung 47:19–24. doi: 10.1515/hfsg.1993.47.1.19 CrossRefGoogle Scholar
  84. Magel E, Hübner B (1997) Distribution of phenylalanine ammonia lyase and chalcone synthase within trunks of Robinia pseudoacacia L. Bot Acta 110:314–322Google Scholar
  85. Magel E, Drouet A, Claudot A, Ziegler H (1991) Formation of heartwood substances in the stem of Robinia pseudoacacia L. I. Distribution of phenylalanine ammonium lyase and chalcone synthase across the trunk. Trees 5:203–207. doi: 10.1007/bf00227526 CrossRefGoogle Scholar
  86. Magel E, Jay-Allemand C, Ziegler H (1994) Formation of heartwood substances in the stemwood of Robinia pseudoacacia L. II. Distribution of nonstructural carbohydrates and wood extractives across the trunk. Trees 8:165–171. doi: 10.1007/bf00196843 CrossRefGoogle Scholar
  87. Magel E, Monties B, Drouet A, Jay-Allemand C, Ziegler H (1995) Heartwood formation: biosynthesis of heartwood extractives and ‘secondary’ lignification. Eurosilva: contribution to forest tree physiology. Results from Eurosilva projects, presented at Dourdan, France, 7–10 Nov 1994Google Scholar
  88. Magel E, Hillinger C, Hoell W, Ziegler H (1997) Biochemistry and physiology of heartwood formation: role of reserve substances. In: Rennenberg H, Eschrich W, Ziegler H (eds) Trees: contributions to modern tree physiology. Backhuys Publishers, LeidenGoogle Scholar
  89. Magel E, Abdel-Latif A, Hampp R (2001a) Non-structural carbohydrates and catalytic activities of sucrose metabolizing enzymes in trunks of two Juglans species and their role in heartwood formation. Holzforschung 55:135–145. doi: 10.1515/hf.2001.022 CrossRefGoogle Scholar
  90. Magel E, Hillinger C, Wagner T, Höll W (2001b) Oxidative pentose phosphate pathway and pyridine nucleotides in relation to heartwood formation in Robinia pseudoacacia L. Phytochemistry 57:1061–1068. doi: 10.1016/s0031-9422(01)00091-7 PubMedCrossRefGoogle Scholar
  91. Magel E, Hauch S, De Filippis L (2002) Random amplification of polymorphic DNA and reverse transcription polymerase chain reaction of RNA in studies of sapwood and heartwood. In: Chaffey NJ (ed) Wood formation in trees: cell and molecular biology techniques. Taylor & Francis, London, New YorkGoogle Scholar
  92. Martinez-Sotres C, Lopez-Albarran P, Cruz-de-Leon J, Garcia-Moreno T, Rutiaga-Quinones JG, Vazquez-Marrufo G, Tamariz-Mascarua J, Herrera-Bucio R (2012) Medicarpin, an antifungal compound identified in hexane extract of Dalbergia congestiflora Pittier heartwood. Int Biodeterior Biodegrad 69:38–40. doi: 10.1016/j.ibiod.2011.11.016 CrossRefGoogle Scholar
  93. Mayer I, Koch G, Puls J (2006) Topochemical investigations of wood extractives and their influence on colour changes in American black cherry (Prunus serotina Borkh.). Holzforschung 60:589–594CrossRefGoogle Scholar
  94. Meerts P (2002) Mineral nutrient concentrations in sapwood and heartwood: a literature review. Ann For Sci 59:713–722CrossRefGoogle Scholar
  95. Monga J, Chauhan CS, Sharma M (2011) Human epithelial carcinoma cytotoxicity and inhibition of DMBA/TPA induced squamous cell carcinoma in Balb/c mice by Acacia catechu heartwood. J Pharm Pharmacol 63:1470–1482. doi: 10.1111/j.2042-7158.2011.01354.x PubMedCrossRefGoogle Scholar
  96. Monties B (1987) Composition chimique des bois de chenes. relations avec la qualite des eaux de vie. Connaissance Vigne Vin 21:169–190Google Scholar
  97. Monties B (1989) Lignins. Methods in plant biochemistry. In: Dey PM, Harborne JB (eds) Plant phenolics, vol 1. Academic, San DiegoGoogle Scholar
  98. Monties B (1991) Plant cell wall as lignocellulosic composite: relations with lignin structures and functions. Anim Feed Sci Technol 32:159–175CrossRefGoogle Scholar
  99. Morais MC, Pereira H (2012) Variation of extractives content in heartwood and sapwood of Eucalyptus globulus trees. Wood Sci Technol 46:709–719. doi: 10.1007/s00226-011-0438-7 CrossRefGoogle Scholar
  100. Moreau C, Aksenov N, Lorenzo M, Segerman B, Funk C, Nilsson P, Jansson S, Tuominen H (2005) A genomic approach to investigate developmental cell death in woody tissues of Populus trees. Genome Biol 6:R34PubMedCrossRefGoogle Scholar
  101. Moya R, Calvo-Alvarado J (2012) Variation of wood color parameters of Tectona grandis and its relationship with physical environmental factors. Ann For Sci 69:947–959. doi: 10.1007/s13595-012-0217-0 CrossRefGoogle Scholar
  102. Moya R, Marin JD (2011) Grouping of Tectona grandis (L.f.) clones using wood color and stiffness. New For 42:329–345. doi: 10.1007/s11056-011-9255-y CrossRefGoogle Scholar
  103. Moya R, Fallas RS, Bonilla PJ, Tenorio C (2012) Relationship between wood color parameters measured by the CIELab system and extractive and phenol content in Acacia mangium and Vochysia guatemalensis from fast-growth plantations. Molecules 17:3639–3652. doi: 10.3390/molecules17043639 PubMedCrossRefGoogle Scholar
  104. Mun SP, Prewitt L (2011) Antifungal activity of organic extracts from Juniperus virginiana heartwood against wood decay fungi. For Prod J 61:443–449Google Scholar
  105. Nair MNB, Shah JJ, Pandalai RC (1981) Wood anatomy and histochemical-changes of sapwood during heartwood formation in Bridelia retusa Spreng. Proc Ind Acad Sci Plant Sci 90:425–433Google Scholar
  106. Nakaba S, Kubo T, Funada R (2008) Differences in patterns of cell death between ray parenchyma cells and ray tracheids in the conifers Pinus densiflora and Pinus rigida. Trees 22:623–630. doi: 10.1007/s00468-008-0220-0 CrossRefGoogle Scholar
  107. Nakaba S, Yamagishi Y, Sano Y, Funada R (2012) Temporally and spatially controlled death of parenchyma cells is involved in heartwood formation in pith regions of branches of Robinia pseudoacacia var. inermis. J Wood Sci 58:69–76. doi: 10.1007/s10086-011-1221-y CrossRefGoogle Scholar
  108. Napoleao TH, Gomes FS, Lima TA, Santos NDL, Sa RA, Albuquerque AC, Coelho LCBB, Paiva PMG (2011) Termiticidal activity of lectins from Myracrodruon urundeuva against Nasutitermes corniger and its mechanisms. Int Biodeterior Biodegrad 65:52–59. doi: 10.1016/j.ibiod.2010.05.01 CrossRefGoogle Scholar
  109. Nawrot M, Pazdrowski W, Szymanski M (2008) Dynamics of heartwood formation and axial and radial distribution of sapwood and heartwood in stems of European larch (Larix decidua Mill.). J For Sci 9:409–417Google Scholar
  110. Nelson ND (1978) Xylem ethylene, phenol oxidizing enzymes, and nitrogen and heartwood formation in walnut and cherry. Can J Bot 56:626–634CrossRefGoogle Scholar
  111. Niamke FB, Amusant N, Charpentier JP, Chaix G, Baissac Y, Boutahar N, Adima AA, Kati-Coulibaly S, Jay-Allemand C (2011) Relationships between biochemical attributes (non-structural carbohydrates and phenolics) and natural durability against fungi in dry teak wood (Tectona grandis L. f.). Ann For Sci 68:201–211. doi: 10.1007/s13595-011-0021-2 CrossRefGoogle Scholar
  112. Nobuchi T, Harada H (1983) Physiological features of the “white zone” of Sugi (Cryptomeria japonica D. Don) cytological structure and moisture content. Mokuzai Gakkaishi 29:824–832Google Scholar
  113. Nobuchi T, Harada H (1985) Ultrastructural changes in parenchyma cells of Sugi (Cryptomeria japonica D. Don) associated with heartwood formation. Mokuzai Gakkaishi 31:965–973Google Scholar
  114. Nobuchi T, Sato R, Iwata R, Harada H (1984) Season of heartwood formation and the related cytological structure of ray parenchyma cells in Robinia pseudoacacia L. Mokuzai Gakkaishi 30:628–636Google Scholar
  115. Okada N, Hirakawa Y, Katayama Y (2011) Application of activable tracers to investigate radial movement of minerals in the stem of Japanese cedar (Cryptomeria japonica). J Wood Sci 57:421–428. doi: 10.1007/s10086-011-1188-8 CrossRefGoogle Scholar
  116. Okada N, Hirakawa Y, Katayama Y (2012) Radial movement of sapwood-injected rubidium into heartwood of Japanese cedar (Cryptomeria japonica) in the growing period. J Wood Sci 58:1–8. doi: 10.1007/s10086-011-1218-6 CrossRefGoogle Scholar
  117. Panshin AJ, de Zeeuw C (1980) Textbook of wood technology. Part 1. Formation, anatomy, and properties of wood. McGraw-Hill, New YorkGoogle Scholar
  118. Passialis C, Voulgaridis E, Adamopoulos S, Matsouka M (2008) Extractives, acidity, buffering capacity, ash and inorganic elements of black locust wood and bark of different clones and origin. Eur J Wood Wood Prod 66:395–400. doi: 10.1007/s00107-008-0254-4 CrossRefGoogle Scholar
  119. Patten AM, Davin LB, Lewis NG (2008) Relationship of dirigent protein and 18s RNA transcript localization to heartwood formation in western red cedar. Phytochemistry 69:3023–3037. doi: 10.1016/j.phytochem.2008.06.020 CrossRefGoogle Scholar
  120. Pfautsch S, Bleby TM, Rennenberg H, Adams MA (2010) Sap flow measurements reveal influence of temperature and stand structure on water use of Eucalyptus regnans forests. For Ecol Manag 259:1190–1199. doi: 10.1016/j.foreco.2010.01.006 CrossRefGoogle Scholar
  121. Pfautsch S, Keitel C, Turnbull TL, Braimbridge MJ, Wright TE, Simpson RR, O'Brien JA, Adams MA (2011) Diurnal patterns of water use in Eucalyptus victrix indicate pronounced desiccation-rehydration cycles despite unlimited water supply. Tree Physiol 31:1041–1051. doi: 10.1093/treephys/tpr082 PubMedCrossRefGoogle Scholar
  122. Pfautsch S, Macfarlane C, Ebdon N, Meder R (2012) Assessing sapwood depth and wood properties in Eucalyptus and Corymbia spp. using visual methods and near infrared spectroscopy (NIR). Trees 26:963–974. doi: 10.1007/s00468-011-0674-3 CrossRefGoogle Scholar
  123. Pollet C, Jourez B, Hébert J (2008) Natural durability of black locust (Robinia pseudoacacia L.) wood grown in Wallonia, Belgium. Can J For Res 38:1366–1372. doi: 10.1139/x07-244 CrossRefGoogle Scholar
  124. Preisig-Müller R, Schwekendiek A, Brehm I, Reif HJ, Kindl H (1999) Characterization of a pine multigene family containing elicitor-responsive stilbene synthase genes. Plant Mol Biol 39:221–229. doi: 10.1023/a:1006163030646 PubMedCrossRefGoogle Scholar
  125. Rachmayanti Y, Leinemann L, Gailing O, Finkeldey R (2009) DNA from processed and unprocessed wood: factors influencing the isolation success. Forensic Sci Int Genet 3:185–192. doi: 10.1016/j.fsigen.2009.01.002 PubMedCrossRefGoogle Scholar
  126. Rodrigues AMS, Amusant N, Beauchene J, Eparvier V, Lemenager N, Baudasse C, Espindola LS, Stien D (2011) The termiticidal activity of Sextonia rubra (Mez) van der Werff (Lauraceae) extract and its active constituent rubrynolide. Pest Manage Sci 67:1420–1423. doi: 10.1002/ps.2167 CrossRefGoogle Scholar
  127. Roux DG, Paulus E (1962) Condensed tannins.13. interrelationships of flavonoid components from heartwood of Robinia pseudoacacia. Biochem J 82:324–330PubMedGoogle Scholar
  128. Royer M, Rodrigues AMS, Herbette G, Beauchene J, Chevalier M, Herault B, Thibaut B, Stien D (2012) Efficacy of Bagassa guianensis Aubl. extract against wood decay and human pathogenic fungi. Int Biodeterior Biodegrad 70:55–59CrossRefGoogle Scholar
  129. Sá R, Gomes F, Napoleão T, Santos N, Melo C, Gusmão N, Coelho L, Paiva P, Bieber L (2009) Antibacterial and antifungal activities of Myracrodruon urundeuva heartwood. Wood Sci Technol 43:85–95. doi: 10.1007/s00226-008-0220-7 CrossRefGoogle Scholar
  130. Saito K, Mitsutani T, Imai T, Matsushita Y, Fukushima K (2008a) Discriminating the indistinguishable sapwood from heartwood in discolored ancient wood by direct molecular mapping of specific extractives using time-of-flight secondary ion mass spectrometry. Anal Chem 80:1552–1557. doi: 10.1021/ac7021162 PubMedCrossRefGoogle Scholar
  131. Saito K, Mitsutani T, Imai T, Matsushita Y, Yamamoto A, Fukushima K (2008b) Chemical differences between sapwood and heartwood of Chamaecyparis obtusa detected by ToF-SIMS. Appl Surf Sci 255:1088–1091CrossRefGoogle Scholar
  132. Saito K, Watanabe Y, Shirakawa M, Matsushita Y, Imai T, Koike T, Sano Y, Funada R, Fukazawa K, Fukushima K (2012) Direct mapping of morphological distribution of syringyl and guaiacyl lignin in the xylem of maple by time-of-flight secondary ion mass spectrometry. Plant J 69:542–552PubMedCrossRefGoogle Scholar
  133. Sandberg K, Sterley M (2009) Separating Norway spruce heartwood and sapwood in dried condition with near-infrared spectroscopy and multivariate data analysis. Eur J For Res 128:475–481. doi: 10.1007/s10342-009-0296-0 CrossRefGoogle Scholar
  134. Scheffer TC, Cowling EB (1966) Natural resistance of wood to microbial deterioration. Annu Rev Phytopathol 4:147–170. doi: 10.1146/ CrossRefGoogle Scholar
  135. Scholz G, Pfeffer A, Ibiza-Palacios MS, Oliver-Villanueva JV (2012) Preliminary study on the durability of Prosopis kuntzei Harms. Eur J Wood Wood Prod 70:361–364. doi: 10.1007/s00107-011-0533-3 CrossRefGoogle Scholar
  136. Schultz TP, Nicholas DD (2000) Naturally durable heartwood: evidence for a proposed dual defensive function of the extractives. Phytochemistry 54:47–52. doi: 10.1016/S0031-9422(99)00622-6 PubMedCrossRefGoogle Scholar
  137. Sekine N, Ashitani T, Murayama T, Ogiyama K, Takahashi K (2009) The bioactive extracts of heartwood of Dalbergia latifolia. Mokuzai Gakkaishi 55:29–36CrossRefGoogle Scholar
  138. Shain L, Hillis WE (1973) Ethylene production in xylem of Pinus radiata in relation to heartwood formation. Can J Bot 51:1331–1335CrossRefGoogle Scholar
  139. Shan T, Ma Q, Guo K, Liu J, Li W, Wang F, Wu E (2011) Xanthones from mangosteen extracts as natural chemopreventive agents: potential anticancer drugs. Curr Mol Med 11:666–677PubMedCrossRefGoogle Scholar
  140. Song K, Liu B, Jiang X, Yin Y (2011) Cellular changes of tracheids and ray parenchyma cells from cambium to heartwood in Cunninghamia lanceolata. J Trop For Sci 23:478–487Google Scholar
  141. Songsiang U, Wanich S, Pitchuanchom S, Netsopa S, Uanporn K, Yenjai C (2009) Bioactive constituents from the stems of Dalbergia parviflora. Fitoterapia 80:427–431. doi: 10.1016/j.fitote.2009.06.002 PubMedCrossRefGoogle Scholar
  142. Spicer R (2005) Senescence in secondary xylem: heartwood formation as an active developmental program. In: Holbrook NM, Zwieniecki MA (eds) Vascular transport in plants. Elsevier Academic, Amsterdam. doi: 10.1016/B978-012088457-5/50024-1 Google Scholar
  143. Spicer R, Holbrook NM (2005) Within-stem oxygen concentration and sap flow in four temperate tree species: does long-lived xylem parenchyma experience hypoxia? Plant Cell Environ 28:192–201CrossRefGoogle Scholar
  144. Spicer R, Holbrook NM (2007a) Parenchyma cell respiration and survival in secondary xylem: does metabolic activity decline with cell age? Plant Cell Environ 30:934–943. doi: 10.1111/j.1365-3040.2007.01677.x PubMedCrossRefGoogle Scholar
  145. Spicer R, Holbrook NM (2007b) Effects of carbon dioxide and oxygen on sapwood respiration in five temperate tree species. J Exp Bot 58:1313–1320. doi: 10.1093/jxb/erl296 PubMedCrossRefGoogle Scholar
  146. Su PP, Granholm K, Pranovich A, Harju L, Holmbom B, Ivaska A (2012) Metal ion sorption to birch and spruce wood. BioResources 7:2141–2155Google Scholar
  147. Takeda I, Somura H, Mori Y (2010) Recovery of phosphorus from natural water bodies using iron-oxidizing bacteria and woody biomass. Ecol Eng 36:1064–1069CrossRefGoogle Scholar
  148. Tanaka T, Jiang ZH, Kouno I (1998) Distribution of ellagic acid derivatives and a diarylheptanoid in wood of Platycarya strobilacea. Phytochemistry 47:851–854CrossRefGoogle Scholar
  149. Taylor A, Gartner B, Morrell J (2002) Heartwood formation and natural durability – a review. Wood Fiber Sci 34:587–611Google Scholar
  150. Taylor AM, Brooks JR, Lachenbruch B, Morrell JJ (2007) Radial patterns of carbon isotopes in the xylem extractives and cellulose of Douglas-fir. Tree Physiol 27:921–927PubMedCrossRefGoogle Scholar
  151. Tsuruta K, Yoshida Y, Kusumoto N, Sekine N, Ashitani T, Takahashi K (2011) Inhibition activity of essential oils obtained from Japanese trees against Skeletonema costatum. J Wood Sci 57:520–525. doi: 10.1007/s10086-011-1209-7 CrossRefGoogle Scholar
  152. Ucar MB, Ucar G (2011) Characterization of methanol extracts from Quercus hartwissiana wood and bark. Chem Nat Compd 47:697–703CrossRefGoogle Scholar
  153. Umehara K, Nemoto K, Matsushita A, Terada E, Monthakantirat O, De-Eknamkul W, Miyase T, Warashina T, Degawa M, Noguchi H (2009) Flavonoids from the heartwood of the Thai medicinal plant Dalbergia parviflora and their effects on estrogenic-responsive human breast cancer cells. J Nat Prod 72:2163–2168. doi: 10.1021/np900676y PubMedCrossRefGoogle Scholar
  154. Vansteenkiste D, Van Acker J, Stevens M, Le Thiec D, Nepveu G (2007) Composition, distribution and supposed origin of mineral inclusions in sessile oak wood – consequences for microdensitometrical analysis. Ann For Sci 64:11–19. doi: 10.1051/forest:2006083 CrossRefGoogle Scholar
  155. Vetter RE, Coradin VR, Martinol EC, Camargos JAA (1990) Wood colour – a comparison between determination methods. IAWA J 11:429–439Google Scholar
  156. Waikedre J, Vitturo CI, Molina A, Theodoro PNET, do Rosario Rodrigues Silva M, Espindola LS, Maciuk A, Fournet A (2012) Antifungal activity of the essential oils of Callitris neocaledonica and C. sulcata heartwood (Cupressaceae). Chem Biodivers 9:644–653. doi: 10.1002/cbdv.201100229 PubMedCrossRefGoogle Scholar
  157. Wang XC, Wang CK, Zhang QZ, Quan XK (2010a) Heartwood and sapwood allometry of seven Chinese temperate tree species. Ann For Sci 67:410. doi: 10.1051/forest/2009131 CrossRefGoogle Scholar
  158. Wang YL, Liu GB, Kume T, Otsuki K, Yamanaka N, Du S (2010b) Estimating water use of a black locust plantation by the thermal dissipation probe method in the semiarid region of Loess Plateau, China. J For Res 15:241–251. doi: 10.1007/s10310-010-0184-y CrossRefGoogle Scholar
  159. Wang J, Li JA, Li SJ, Freitag C, Morrell JJ (2011a) Antifungal activities of Cunninghamia lanceolata heartwood extractives. BioResources 6:606–614Google Scholar
  160. Wang YZ, Sun SQ, Zhou YB (2011b) Extract of the dried heartwood of Caesalpinia sappan L. attenuates collagen-induced arthritis. J Ethnopharmacol 136:271–278. doi: 10.1016/j.jep.2011.04.061 PubMedCrossRefGoogle Scholar
  161. Wei Q, Leblon B, La Rocque A (2011) On the use of X-ray computed tomography for determining wood properties: a review. Can J For Res 41:2120–2140CrossRefGoogle Scholar
  162. Wu SF, Chang FR, Wang SY, Hwang TL, Lee CL, Chen SL, Wu CC, Wu YC (2011a) Anti-inflammatory and cytotoxic neoflavonoids and benzofurans from Pterocarpus santalinus. J Nat Prod 74:989–996. doi: 10.1021/np100871g PubMedCrossRefGoogle Scholar
  163. Wu SF, Hwang TL, Chen SL, Wu CC, Ohkoshi E, Lee KH, Chang FR, Wu YC (2011b) Bioactive components from the heartwood of Pterocarpus santalinus. Bioorg Med Chem Lett 21:5630–5632PubMedCrossRefGoogle Scholar
  164. Xu DP, Sung SJS, Loboda T, Kormanik PP, Black CC (1989) Characterization of sucrolysis via the uridine diphosphate and pyrophosphate dependent sucrose synthase pathway. Plant Physiol 90:635–642. doi: 10.1104/pp.90.2.635 PubMedCrossRefGoogle Scholar
  165. Yang J, Park S, Kamdem DP, Keathley DE, Retzel E, Paule C, Kapur V, Han KH (2003) Novel gene expression profiles define the metabolic and physiological processes characteristic of wood and its extractive formation in a hardwood tree species, Robinia pseudoacacia. Plant Mol Biol 52:935–956. doi: 10.1023/a:1025445427284 PubMedCrossRefGoogle Scholar
  166. Yang J, Kamdem DP, Keathley DE, Han KH (2004) Seasonal changes in gene expression at the sapwood – heartwood transition zone of black locust (Robinia pseudoacacia) revealed by cDNA microarray analysis. Tree Physiol 24:461–474. doi: 10.1093/treephys/24.4.461 PubMedCrossRefGoogle Scholar
  167. Yen TB, Chang HT, Hsieh CC, Chang ST (2008) Antifungal properties of ethanolic extract and its active compounds from Calocedrus macrolepis var. formosana (Florin) heartwood. Bioresour Technol 99:4871–4877. doi: 10.1016/j.biortech.2007.09.037 PubMedCrossRefGoogle Scholar
  168. Yoshida K, Nishiguchi M, Futamura N, Nanjo T (2007) Expressed sequence tags from Cryptomeria japonica sapwood during the drying process. Tree Physiol 27:1–9PubMedCrossRefGoogle Scholar
  169. Yoshida K, Futamura N, Nishiguchi M (2012) Collection of expressed genes from the transition zone of Cryptomeria japonica in the dormant season. J Wood Sci 58:89–103. doi: 10.1007/s10086-011-1234-6 CrossRefGoogle Scholar
  170. Zhang T, Bai SL, Bardet S, Almeras T, Thibaut B, Beauchene J (2011) Radial variations of vibrational properties of three tropical woods. J Wood Sci 57:377–386. doi: 10.1007/s10086-011-1189-7 CrossRefGoogle Scholar
  171. Ziegler H (1968) Biologische Aspekte der Kernholzbildung. Eur J Wood Wood Prod 26:61–68. doi: 10.1007/bf02615811 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Wood Biology, Department of Wood ScienceUniversity of HamburgHamburgGermany

Personalised recommendations