Hyperelastic Susceptibility Artifact Correction of DTI in SPM

  • Lars Ruthotto
  • Siawoosh Mohammadi
  • Constantin Heck
  • Jan Modersitzki
  • Nikolaus Weiskopf
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Zusammenfassung

Echo Planar Imaging (EPI) is a MRI acquisition technique that is the backbone of widely used investigation techniques in neuroscience like, e.g., Diffusion Tensor Imaging (DTI). While EPI offers considerable reduction of the acquisition time one major drawback is its high sensitivity to susceptibility artifacts. Susceptibility differences between soft tissue, bone and air cause geometrical distortions and intensity modulations of the EPI data. These susceptibility artifacts severely complicate the fusion of micro-structural information acquired with EPI and conventionally acquired structural information. In this paper, we introduce a new tool for hyperelastic susceptibility correction of DTI data (HySCO) that is integrated into the Statistical Parametric Mapping (SPM) software as a toolbox. Our new correction pipeline is based on two datasets acquired with reversed phase encoding gradients. For the correction, we integrated the variational image registration approach by Ruthotto et al. 2007 into the SPM batch mode. We briefly review the model, discuss involved parameter settings and exemplarily demonstrate the effectiveness of HySCO on a human brain DTI dataset.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Stehling M, Turner R, Mansfield P. Echo-planar imaging: magnetic resonance imaging in a fraction of a second. Science. 1991;254(5028):43–50.Google Scholar
  2. Le Bihan D, Mangin J, Poupon C. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging. 2001;13:534–46.Google Scholar
  3. Ruthotto L, Kugel H, Olesch J, et al. Diffeomorphic susceptibility artefact correction of diffusion-weighted magnetic resonance images. Phys Med Biol. 2012;57:5715–31.Google Scholar
  4. Hutton C, Bork A, Josephs O, et al. Image distortion correction in fMRI: a quantitative evaluation. Neuroimage. 2002;16(1):217–40.Google Scholar
  5. Chang H, Fitzpatrick JM. A technique for accurate magnetic resonance imaging in the presence of field inhomogeneities. IEEE Trans Med Imaging. 1992;11(3):319–29.Google Scholar
  6. Andersson J, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage. 2003;20(2):870–88.Google Scholar
  7. Holland D, Kuperman JM, Dale AM. Efficient correction of inhomogeneous static magnetic field-induced distortion in echo planar imaging. Neuroimage. 2010;50(1):175–83.Google Scholar
  8. Modersitzki J. FAIR: flexible algorithms for image registration. SIAM Rev Soc Ind Appl Math; 2009.Google Scholar
  9. Mohammadi S, Nagy Z, Hutton C, et al. Correction of vibration artifacts in DTI using phase-encoding reversal (COVIPER). Magn Reson Med. 2012;68(3):882–9.Google Scholar
  10. Jezzard P, Barnett A, Pierpaoli C. Characterization of and correction for eddy current artifacts in echo planar diffusion imaging. Magn Reson Med. 2005;39(5):801–12.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lars Ruthotto
    • 1
  • Siawoosh Mohammadi
    • 2
  • Constantin Heck
    • 1
  • Jan Modersitzki
    • 1
  • Nikolaus Weiskopf
    • 2
  1. 1.Institute of Mathematics and Image ComputingUniversität zu LübeckLübeckDeutschland
  2. 2.Wellcome Trust Center for NeuroimagingUniversity College LondonLondonUK

Personalised recommendations