Skip to main content

Strigolactones and the Coordinated Development of Shoot and Root

Part of the Signaling and Communication in Plants book series (SIGCOMM,volume 19)

Abstract

Strigolactones are plant hormones with diverse biological roles. In addition to their effect on plant communication in the rhizosphere, they act as signalling molecules in both shoot and root to regulate several aspects of plant growth and development. In this chapter we will present the role of strigolactones as regulators of development and growth of different plant parts. We will highlight some of their properties as signalling molecules, including their modes of action, their movement in the plant and their crosstalk with other plant hormones. Also, we will review evidence that strigolactones contribute to the response of shoot and root to nutrient conditions and discuss their role in the coordination of shoot and root development under different growth conditions.

Keywords

  • Strigolactones
  • Shoot
  • Root
  • Lateral buds
  • Phosphate
  • Hormones
  • Ethylene
  • Cytokinin
  • Auxin
  • Root hairs
  • Primary root
  • Lateral root

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-36470-9_9
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-36470-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

References

  • Aguilar-Martínez JA, Poza-Carrión C, Cubas P (2007) Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19:458–472

    PubMed  CrossRef  Google Scholar 

  • Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr EM, Greb T (2011) Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc Natl Acad Sci USA 108:20242–20247

    PubMed  CrossRef  CAS  Google Scholar 

  • Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S (2012) The path from {beta}-carotene to carlactone, a strigolactone-like plant hormone. Science 335:1348–1351

    PubMed  CrossRef  CAS  Google Scholar 

  • Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009) d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50:1416–1424

    PubMed  CrossRef  CAS  Google Scholar 

  • Bates TR, Lynch JP (2000) The efficiency of Arabidopsis thaliana (Brassicaceae) root hairs in phosphorus acquisition. Am J Bot 87:964–970

    PubMed  CrossRef  CAS  Google Scholar 

  • Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertov D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    PubMed  CrossRef  CAS  Google Scholar 

  • Bennett T, Sieberer T, Willett B, Booker J, Luschnig C, Leyser O (2006) The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr Biol 16:553–563

    PubMed  CrossRef  CAS  Google Scholar 

  • Beveridge CA, Murfet IC, Kerhoas L, Sotta B, Miginiac E, Rameau C (1997) The shoot controls zeatin riboside export from pea roots. Evidence from the branching mutant rms4. Plant J 11:339–345

    CrossRef  CAS  Google Scholar 

  • Bieleski R (1973) Phosphate pools, phosphate transport, and phosphate availability. Annu Rev Plant Physiol 24:225–252

    CrossRef  CAS  Google Scholar 

  • Braun N, de Saint GA, Pillot J-P, Sp B-M, Dalmais M, Antoniadi I, Li X, Maia-Grondard A, Le Signor C, Bouteiller N, Luo D, Bendahmane A, Turnbull C, Rameau C (2012) The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiol 158:225–238

    PubMed  CrossRef  CAS  Google Scholar 

  • Brewer PB, Dun EA, Ferguson BJ, Rameau C, Beveridge CA (2009) Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol 150:482–493

    PubMed  CrossRef  CAS  Google Scholar 

  • Brewer PB, Koltai H, Beveridge CA (2013) Diverse roles of strigolactones in plant development. Mol Plant 6(1):18–28

    PubMed  CrossRef  CAS  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    PubMed  CrossRef  CAS  Google Scholar 

  • Chiou T-J, Lin S-I (2011) Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62:185–206

    PubMed  CrossRef  CAS  Google Scholar 

  • Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154:1189–1190

    PubMed  CrossRef  CAS  Google Scholar 

  • Delaux P-M, Xie X, Timme RE, Puech-Pages V, Dunand C, Lecompte E, Delwiche CF, Yoneyama K, Bécard G, Séjalon-Delmas N (2012) Origin of strigolactones in the green lineage. New Phytol 195:857–871

    PubMed  CrossRef  CAS  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    PubMed  CrossRef  CAS  Google Scholar 

  • Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12:211–221

    PubMed  CrossRef  CAS  Google Scholar 

  • Dun EA, Brewer PB, Beveridge CA (2009a) Strigolactones: discovery of the elusive shoot branching hormone. Trends Plant Sci 14:364–372

    PubMed  CrossRef  CAS  Google Scholar 

  • Dun EA, Hanan J, Beveridge CA (2009b) Computational modeling and molecular physiology experiments reveal new insights into shoot branching in pea. Plant Cell 21:3459–3472

    PubMed  CrossRef  CAS  Google Scholar 

  • Dun EA, de Saint Germain A, Rameau C, Beveridge CA (2012) Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol 158:487–498

    PubMed  CrossRef  CAS  Google Scholar 

  • Dun EA, de Saint Germain A, Rameau C, Beveridge C (2013) Dynamics of strigolactone function and shoot branching responses in Pisum sativum. Mol Plant 6:128–140

    Google Scholar 

  • Ericsson T (1995) Growth and shoot: root ratio of seedlings in relation to nutrient availability. Plant Soil 168–169:205–214

    CrossRef  Google Scholar 

  • Finlayson SA, Krishnareddy SR, Kebrom TH, Casal JJ (2010) Phytochrome regulation of branching in Arabidopsis. Plant Physiol 152:1914–1927

    PubMed  CrossRef  CAS  Google Scholar 

  • Foo E, Turnbull CGN, Beveridge CA (2001) Long-distance signaling and the control of branching in the rms1 mutant of pea. Plant Physiol 126:203–209

    PubMed  CrossRef  CAS  Google Scholar 

  • Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge CA (2005) The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 17:464–474

    PubMed  CrossRef  CAS  Google Scholar 

  • Foo E, Morris SE, Parmenter K, Young N, Wang H, Jones A, Rameau C, Turnbull CGN, Beveridge CA (2007) Feedback regulation of xylem cytokinin content is conserved in pea and Arabidopsis. Plant Physiol 143:1418–1428

    PubMed  CrossRef  CAS  Google Scholar 

  • Gilroy S, Jones DL (2000) Through form to function: root hair development and nutrient uptake. Trends Plant Sci 5:56–60

    PubMed  CrossRef  CAS  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    PubMed  CrossRef  CAS  Google Scholar 

  • Hamiaux C, Drummond RSM, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC (2012) DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol 22:2032–2036

    PubMed  CrossRef  CAS  Google Scholar 

  • Hayward A, Stirnberg P, Beveridge C, Leyser O (2009) Interactions between auxin and strigolactone in shoot branching control. Plant Physiol 151:400–412

    PubMed  CrossRef  CAS  Google Scholar 

  • Ishida T, Kurata T, Okada K, Wada T (2008) A genetic regulatory network in the development of trichomes and root hairs. Annu Rev Plant Biol 59:365–386

    PubMed  CrossRef  CAS  Google Scholar 

  • Jain A, Poling MD, Karthikeyan AS, Blakeslee JJ, Peer WA, Titapiwatanakun B, Murphy AS, Raghothama KG (2007) Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. Plant Physiol 144:232–247

    PubMed  CrossRef  CAS  Google Scholar 

  • Johnson X, Brcich T, Dun EA, Goussot M, Haurogne K, Beveridge CA, Rameau C (2006) Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol 142:1014–1026

    PubMed  CrossRef  CAS  Google Scholar 

  • Kapulnik Y, Delaux P-M, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Séjalon-Delmas N, Combier J-P, Bécard G, Belausov E, Beeckman T, Dor E, Hershenhorn J, Koltai H (2011a) Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233:209–216

    PubMed  CrossRef  CAS  Google Scholar 

  • Kapulnik Y, Resnick N, Mayzlish-Gati E, Kaplan Y, Wininger S, Hershenhorn J, Koltai H (2011b) Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis. J Exp Bot 62:2915–2924

    PubMed  CrossRef  CAS  Google Scholar 

  • Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H, Ruyter-Spira C (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155:974–987

    PubMed  CrossRef  CAS  Google Scholar 

  • Kohlen W, Charnikhova T, Lammers M, Pollina T, Tóth P, Haider I, Pozo MJ, de Maagd RA, Ruyter-Spira C, Bouwmeester HJ, López-Ráez JA (2012) The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol 196:535–547

    PubMed  CrossRef  CAS  Google Scholar 

  • Koltai H, LekKala SP, Bhattacharya C, Mayzlish-Gati E, Resnick N, Wininger S, Dor E, Yoneyama K, Yoneyama K, Hershenhorn J, Joel DM, Kapulnik Y (2010a) A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions. J Exp Bot 61:1739–1749

    PubMed  CrossRef  CAS  Google Scholar 

  • Koltai H (2011) Strigolactones are regulators of root development. New Phytol 190:545–549

    PubMed  CrossRef  CAS  Google Scholar 

  • Koltai H (2012) Strigolactones activate different hormonal pathways for regulation of root development in response to phosphate growth conditions. Ann Bot. doi:10.1093/aob/mcs216

    Google Scholar 

  • Koltai H, Dor E, Hershenhorn J, Joel D, Weininger S, Lekalla S, Shealtiel H, Bhattacharya C, Eliahu E, Resnick N, Barg R, Kapulnik Y (2010b) Strigolactones’ effect on root growth and root-hair elongation may be mediated by auxin-efflux carriers. J Plant Growth Regul 29:129–136

    CrossRef  CAS  Google Scholar 

  • Koltai H, Matusova R, Kapulnik Y (2012) Strigolactones in root exudates as a signal in symbiotic and parasitic interactions. In: Vivanco JM, Baluška F (eds) Secretions and exudates in biological systems, Signaling and communication in plants. Springer, Berlin, pp 49–73

    CrossRef  Google Scholar 

  • Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483:341–344

    PubMed  CrossRef  CAS  Google Scholar 

  • Leyser O (2009) The control of shoot branching: an example of plant information processing. Plant Cell Environ 32:694–703

    PubMed  CrossRef  CAS  Google Scholar 

  • Liang J, Zhao L, Challis R, Leyser O (2010) Strigolactone regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum). J Exp Bot 61:3069–3078

    PubMed  CrossRef  CAS  Google Scholar 

  • Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y (2009) DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21:1512–1525

    PubMed  CrossRef  CAS  Google Scholar 

  • Liu W, Kohlen W, Lillo A, Op den Camp R, Ivanov S, Hartog M, Limpens E, Jamil M, Smaczniak C, Kaufmann K, Yang W-C, Hooiveld GJEJ, Charnikhova T, Bouwmeester HJ, Bisseling T, Geurts R (2011) Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell 23:3853–3865

    PubMed  CrossRef  CAS  Google Scholar 

  • Lopez-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129:244–256

    PubMed  CrossRef  CAS  Google Scholar 

  • López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287

    PubMed  CrossRef  Google Scholar 

  • López-Ráez J, Bouwmeester H (2008) Fine-tuning regulation of strigolactone biosynthesis under phosphate starvation. Plant Signal Behav 3:963–965

    PubMed  Google Scholar 

  • Maathuis FJM (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12:250–258

    PubMed  CrossRef  CAS  Google Scholar 

  • Mashiguchi K, Sasaki E, Shimada Y, Nagae M, Ueno K, Nakano T, Yoneyama K, Suzuki Y, Asami T (2009) Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis. Biosci Biotechnol Biochem 73:2460–2465

    PubMed  CrossRef  CAS  Google Scholar 

  • Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934

    PubMed  CrossRef  CAS  Google Scholar 

  • Mayzlish-Gati E, De Cuyper C, Goormachtig S, Beeckman T, Vuylsteke M, Brewer P, Beveridge C, Yermiyahu U, Kaplan Y, Enzer Y, Wininger S, Resnick N, Cohen M, Kapulnik Y, Koltai H (2012) Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiol 160:1329–1341

    PubMed  CrossRef  CAS  Google Scholar 

  • Miyashima S, Sebastian J, Lee JY, Helariutta Y (2012) Stem cell function during plant vascular development. EMBO J 32(2):178–193

    PubMed  CrossRef  Google Scholar 

  • Morris SE, Cox MCH, Ross JJ, Krisantini S, Beveridge CA (2005) Auxin dynamics after decapitation are not correlated with the initial growth of axillary buds. Plant Physiol 138:1665–1672

    PubMed  CrossRef  CAS  Google Scholar 

  • Peret B, Clement M, Nussaume L, Desnos T (2011) Root developmental adaptation to phosphate starvation: better safe than sorry. Trends Plant Sci 16:442–450

    PubMed  CrossRef  CAS  Google Scholar 

  • Perez-Torres C-A, Lopez-Bucio J, Cruz-Ramirez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L (2008) Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20:3258–3272

    PubMed  CrossRef  CAS  Google Scholar 

  • Proust H, Hoffmann B, Xie X, Yoneyama K, Schaefer DG, Yoneyama K, Nogué F, Rameau C (2011) Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Development 138:1531–1539

    PubMed  CrossRef  CAS  Google Scholar 

  • Rasmussen A, Beveridge CA, Geelen D (2012a) Inhibition of strigolactones promotes adventitious root formation. Plant Signal Behav 7:694–697

    PubMed  CrossRef  CAS  Google Scholar 

  • Rasmussen A, Mason M, De Cuyper C, Brewer PB, Herold S, Agusti J, Geelen DNV, Greb T, Goormachtig S, Beeckman T, Beveridge CA (2012b) Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiol 158:1976–1987

    PubMed  CrossRef  CAS  Google Scholar 

  • Renton M, Hanan J, Ferguson BJ, Beveridge CA (2012) Models of long-distance transport: how is carrier-dependent auxin transport regulated in the stem? New Phytol 194:704–715

    PubMed  CrossRef  CAS  Google Scholar 

  • Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Cardoso C, Lopez-Raez JA, Matusova R, Bours R, Verstappen F, Bouwmeester H (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 155:721–734

    PubMed  CrossRef  CAS  Google Scholar 

  • Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H (2012) The biology of strigolactones. Trends Plant Sci. doi:10.1016/j.tplants.2012.10.003

    Google Scholar 

  • Ruzicka K, Ljung K, Vanneste S, Podhorska R, Beeckman T, Friml J, Benkova E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212

    PubMed  CrossRef  CAS  Google Scholar 

  • Shimizu-Sato S, Tanaka M, Mori H (2009) Auxin-cytokinin interactions in the control of shoot branching. Plant Mol Biol 69:429–435

    PubMed  CrossRef  CAS  Google Scholar 

  • Smith SM, Waters MT (2012) Strigolactones: destruction-dependent perception? Curr Biol 22:R924–R927

    PubMed  CrossRef  CAS  Google Scholar 

  • Stirnberg P, Furner IJ, Ottoline Leyser HM (2007) MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J 50:80–94

    PubMed  CrossRef  CAS  Google Scholar 

  • Strader LC, Chen GL, Bartel B (2010) Ethylene directs auxin to control root cell expansion. Plant J 64:874–884

    PubMed  CrossRef  CAS  Google Scholar 

  • Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GTS, Gr S, Bhalerao R, Ljung K, Bennett MJ (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19:2186–2196

    PubMed  CrossRef  CAS  Google Scholar 

  • Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C (2003) The OsTB1 gene negatively regulates lateral branching in rice. Plant J 33:513–520

    PubMed  CrossRef  CAS  Google Scholar 

  • Umehara M (2011) Strigolactone, a key regulator of nutrient allocation in plants. Plant Biotechnol 28:429–437

    CrossRef  CAS  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    PubMed  CrossRef  CAS  Google Scholar 

  • Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S (2010) Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol 51:1118–1126

    PubMed  CrossRef  CAS  Google Scholar 

  • Waters MT, Brewer PB, Bussell JD, Smith SM, Beveridge CA (2012) The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiol 159:1073–1085

    PubMed  CrossRef  CAS  Google Scholar 

  • Xie X, Yoneyama K, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 48:93–117

    PubMed  CrossRef  CAS  Google Scholar 

  • Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K (2007) Nitrogen deficiency as well as phosphorus deficiency in Sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227:125–132

    PubMed  CrossRef  CAS  Google Scholar 

  • Yoneyama K, Xie X, Kim HI, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K (2012) How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235:1197–1207

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hinanit Koltai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koltai, H., Beveridge, C.A. (2013). Strigolactones and the Coordinated Development of Shoot and Root. In: Baluška, F. (eds) Long-Distance Systemic Signaling and Communication in Plants. Signaling and Communication in Plants, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36470-9_9

Download citation