Skip to main content

Long-Distance Signals Produced by Water-Stressed Roots

Part of the Signaling and Communication in Plants book series (SIGCOMM,volume 19)

Abstract

Roots can sense small changes in soil water status and rapidly communicate this over long distances throughout the plant. This sets in motion numerous response mechanisms for water conservation and drought tolerance, largely facilitated by the hormone ABA. Despite impressive advances in the molecular mechanisms by which ABA mediates such plant responses, long-distance signaling of soil water status remains relatively poorly understood. Recent results refute the long-held hypothesis of ABA biosynthesis in roots as the primary signal, at least in the initial stage of water stress communication. This chapter examines the involvement of leaf ABA biosynthesis, pH-mediated ABA redistribution, and ABA conjugate catabolism in communicating soil water status. In addition, the chapter presents current knowledge on other xylem-borne signaling compounds such as cytokinins, 1-aminocyclopropane-1-carboxylic acid, inorganic ions, and organic acids and their possible interactions with ABA in long-distance signaling of water stress.

Keywords

  • Water Stress
  • Guard Cell
  • Stomatal Closure
  • Soil Water Potential
  • Plant Water Status

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-36470-9_5
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-36470-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1

References

  • Acharya B, Assmann S (2009) Hormone interactions in stomatal function. Plant Mol Biol 69:451–462

    PubMed  CAS  CrossRef  Google Scholar 

  • Alvarez S, Goodger JQD, Marsh EL, Chen SX, Asirvatham VS, Schachtman DP (2006) Characterization of the maize xylem sap proteome. J Proteome Res 5:963–972

    PubMed  CAS  CrossRef  Google Scholar 

  • Alvarez S, Marsh EL, Schroeder SG, Schachtman DP (2008) Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ 31:325–340

    PubMed  CAS  CrossRef  Google Scholar 

  • Bacon MA, Wilkinson S, Davies WJ (1998) pH-regulated leaf cell expansion in droughted plants is abscisic acid dependent. Plant Physiol 118:1507–1515

    PubMed  CAS  CrossRef  Google Scholar 

  • Bahrun A, Jensen CR, Asch F, Mogensen VO (2002) Drought-induced changes in xylem pH, ionic composition, and ABA concentration act as early signals in field-grown maize (Zea mays L.). J Exp Bot 53:251–263

    PubMed  CAS  CrossRef  Google Scholar 

  • Ben-Ari G (2012) The ABA signal transduction mechanism in commercial crops: learning from Arabidopsis. Plant Cell Rep 31:1357–1369

    PubMed  CAS  CrossRef  Google Scholar 

  • Biles CL, Abeles FB (1991) Xylem sap proteins. Plant Physiol 96:597–601

    PubMed  CAS  CrossRef  Google Scholar 

  • Blackman PG, Davies WJ (1985) Root to shoot communication in maize plants of the effects of soil drying. J Exp Bot 36:39–48

    CrossRef  Google Scholar 

  • Bogoslavsky L, Neumann PM (1998) Rapid regulation by acid pH of cell wall adjustment and leaf growth in maize plants responding to reversal of water stress. Plant Physiol 118:701–709

    PubMed  CAS  CrossRef  Google Scholar 

  • Borel C, Frey A, Marion-Poll A, Tardieu F, Simonneau T (2001) Does engineering abscisic acid biosynthesis in Nicotiana plumbaginifolia modify stomatal response to drought? Plant Cell Environ 24:477–489

    CAS  CrossRef  Google Scholar 

  • Boyer JS, Westgate ME (2004) Grain yields with limited water. J Exp Bot 55:2385–2394

    PubMed  CAS  CrossRef  Google Scholar 

  • Brugiere N, Jiao SP, Hantke S, Zinselmeier C, Roessler JA, Niu XM, Jones RJ, Habben JE (2003) Cytokinin oxidase gene expression in maize is localized to the vasculature, and is induced by cytokinins, abscisic acid, and abiotic stress. Plant Physiol 132:1228–1240

    PubMed  CAS  CrossRef  Google Scholar 

  • Buhtz A, Kolasa A, Arlt K, Walz C, Kehr J (2004) Xylem sap protein composition is conserved among different plant species. Planta 219:610–618

    PubMed  CAS  CrossRef  Google Scholar 

  • Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J (2008) Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J 53:739–749

    PubMed  CAS  CrossRef  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought – from genes to the whole plant. Funct Plant Biol 30:239–264

    CAS  CrossRef  Google Scholar 

  • Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell Environ 14:2723–2743

    CAS  CrossRef  Google Scholar 

  • Christmann A, Hoffmann T, Teplova I, Grill E, Muller A (2005) Generation of active pools of abscisic acid revealed by in vivo imaging of water-stressed Arabidopsis. Plant Physiol 137:209–219

    PubMed  CAS  CrossRef  Google Scholar 

  • Christmann A, Weiler EW, Steudle E, Grill E (2007) A hydraulic signal in root-to-shoot signalling of water shortage. Plant J 52:167–174

    PubMed  CAS  CrossRef  Google Scholar 

  • Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol Plant Mol Biol 42:55–76

    CAS  CrossRef  Google Scholar 

  • Davies WJ, Wilkinson S, Loveys BR (2002) Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture. New Phytol 153:449–460

    CAS  CrossRef  Google Scholar 

  • Davies WJ, Kudoyarova GR, Hartung W (2005) Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant’s response to drought. J Plant Growth Regul 24:285–295

    CAS  CrossRef  Google Scholar 

  • Desikan R, Last K, Harrett-Williams R, Taglavia C, Harter K, Hooley R, Hancock JT, Neill SJ (2006) Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis. Plant J 47:907–916

    PubMed  CAS  CrossRef  Google Scholar 

  • Dietz KJ, Sauter A, Wichert K, Messdaghi D, Hartung W (2000) Extracellular beta-glucosidase activity in barley involved in the hydrolysis of ABA glucose conjugate in leaves. J Exp Bot 51:937–944

    PubMed  CAS  CrossRef  Google Scholar 

  • Dodd IC, Tan LP, He J (2003) Do increases in xylem sap pH and/or ABA concentration mediate stomatal closure following nitrate deprivation? J Exp Bot 54:1281–1288

    PubMed  CAS  CrossRef  Google Scholar 

  • Dry PR, Loveys BR (1999) Grapevine shoot growth and stomatal conductance are reduced when part of the root system is dried. Vitis 38:151–156

    Google Scholar 

  • Else MA, Jackson MB (1998) Transport of 1-aminocyclopropane-1-carboxylic acid (ACC) in the transpiration stream of tomato (Lycopersicon esculentum) in relation to foliar ethylene production and petiole epinasty. Aust J Plant Physiol 25:453–458

    CAS  CrossRef  Google Scholar 

  • Endo A, Sawada Y, Takahashi H, Okamoto M, Ikegami K, Koiwai H, Seo M, Toyomasu T, Mitsuhashi W, Shinozaki K, Nakazono M, Kamiya Y, Koshiba T, Nambara E (2008) Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol 147:1984–1993

    PubMed  CAS  CrossRef  Google Scholar 

  • Ernst L, Goodger JQD, Alvarez S, Marsh EL, Berla B, Lockhart E, Jung J, Li P, Bohnert HJ, Schachtman DP (2010) Sulphate as a xylem-borne chemical signal precedes the expression of ABA biosynthetic genes in maize roots. J Exp Bot 61:3395–3405

    PubMed  CAS  CrossRef  Google Scholar 

  • Freundl E, Steudle E, Hartung W (2000) Apoplastic transport of abscisic acid through roots of maize: effect of the exodermis. Planta 210:222–231

    PubMed  CAS  CrossRef  Google Scholar 

  • Gollan T, Schurr U, Schulze E-D (1992) Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annus. I. The concentration of cations, anions, amino acids in, and pH of, the xylem sap. Plant Cell Environ 15:551–559

    CAS  CrossRef  Google Scholar 

  • Goodger JQD, Schachtman DP (2010a) Nitrogen source influences root to shoot signaling under drought. In: Pareek A, Sopory SK, Bohnert HJ, Govindjee (eds) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer Science, Dordrecht, pp 165–173

    Google Scholar 

  • Goodger JQD, Schachtman DP (2010b) Re-examining the role of ABA as the primary long-distance signal produced by water-stressed roots. Plant Signal Behav 5:1298–1301

    PubMed  CAS  CrossRef  Google Scholar 

  • Goodger JQD, Sharp RE, Marsh EL, Schachtman DP (2005) Relationships between xylem sap constituents and leaf conductance of well-watered and water-stressed maize across three xylem sap sampling techniques. J Exp Bot 56:2389–2400

    PubMed  CAS  CrossRef  Google Scholar 

  • Hansen H, Dörffling K (1999) Changes of free and conjugated abscisic acid and phaseic acid in xylem sap of drought-stressed sunflower plants. J Exp Bot 50:1599–1605

    CAS  Google Scholar 

  • Hansen H, Dörffling K (2003) Root-derived trans-zeatin riboside and abscisic acid in drought-stressed and rewatered sunflower plants: interaction in the control of leaf diffusive resistance? Funct Plant Biol 30:365–375

    CAS  CrossRef  Google Scholar 

  • Hartung W, Wilkinson S, Davies WJ (1998) Factors that regulate abscisic acid concentrations at the primary site of action at the guard cell. J Exp Bot 49:361–367

    Google Scholar 

  • Hauser F, Waadt R, Schroeder JI (2011) Evolution of abscisic acid synthesis and signaling mechanisms. Curr Biol 21:R346–R355

    PubMed  CAS  CrossRef  Google Scholar 

  • Hedrich R, Marten I, Lohse G, Dietrich P, Winter H, Lohaus G, Heldt H-W (1994) Malate-sensitive anion channels enable guard cells to sense changes in the ambient CO2 concentration. Plant J 6:741–748

    CAS  CrossRef  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    PubMed  CAS  CrossRef  Google Scholar 

  • Holbrook NM, Shashidhar VR, James RA, Munns R (2002) Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. J Exp Bot 53:1503–1514

    PubMed  CAS  CrossRef  Google Scholar 

  • Hose E, Steudle E, Hartung W (2000) Abscisic acid and hydraulic conductivity of maize roots: a study using cell- and root-pressure probes. Planta 211:874–882

    PubMed  CAS  CrossRef  Google Scholar 

  • Ikegami K, Okamoto M, Seo M, Koshiba T (2009) Activation of abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to water deficit. J Plant Res 122:235–243

    PubMed  CAS  CrossRef  Google Scholar 

  • Jia W, Davies WJ (2007) Modification of leaf apoplastic pH in relation to stomatal sensitivity to root-sourced abscisic acid signals. Plant Physiol 143:68–77

    PubMed  CAS  CrossRef  Google Scholar 

  • Jia W, Zhang J (2008) Stomatal movements and long-distance signaling in plants. Plant Signal Behav 3:772–777

    PubMed  CrossRef  Google Scholar 

  • Jia W, Liang J, Zhang J (2001) Initiation and regulation of water deficit-induced abscisic acid accumulation in maize leaves and roots: cellular volume and water relations. J Exp Bot 52:295–300

    PubMed  CAS  CrossRef  Google Scholar 

  • Jones RJ, Mansfield TA (1971) Antitranspirant activity of the methyl and phenyl esters of abscisic acid. Nature 231:331–332

    PubMed  CAS  CrossRef  Google Scholar 

  • Kaiser WM, Hartung W (1981) Uptake and release of abscisic acid by isolated photoautotrophic mesophyll cells, depending on pH gradients. Plant Physiol 68:202–206

    PubMed  CAS  CrossRef  Google Scholar 

  • Kehr J, Buhtz A, Giavalisco P (2005) Analysis of xylem sap proteins from Brassica napus. BMC Plant Biol 5:11

    PubMed  CrossRef  CAS  Google Scholar 

  • Kharin VV, Zwiers FW, Zhang X, Hegerl GC (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim 20:1419–1444

    CrossRef  Google Scholar 

  • Klingler JP, Batelli G, Zhu J-K (2010) ABA receptors: the START of a new paradigm in phytohormone signalling. J Exp Bot 61:3199–3210

    PubMed  CAS  CrossRef  Google Scholar 

  • Koiwai H, Nakaminami K, Seo M, Mitsuhashi W, Toyomasu T, Koshiba T (2004) Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis. Plant Physiol 134:1697–1707

    PubMed  CAS  CrossRef  Google Scholar 

  • Kondo N, Sugahara K (1978) Changes in transpiration rate of SO2-resistant and -sensitive plants with SO2 fumigation and the participation of abscisic acid. Plant Cell Physiol 19:365–373

    CAS  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    PubMed  CAS  CrossRef  Google Scholar 

  • Krishnan HB, Natarajan SS, Bennett JO, Sicher RC (2011) Protein and metabolite composition of xylem sap from field-grown soybeans (Glycine max). Planta 233:921–931

    PubMed  CAS  CrossRef  Google Scholar 

  • Kudoyarova GR, Vysotskaya LB, Cherkozyanova A, Dodd IC (2007) Effect of partial rootzone drying on the concentration of zeatin-like cytokinins in tomato (Solanum lycopersicum L.) xylem sap and leaves. J Exp Bot 58:161–168

    PubMed  CAS  CrossRef  Google Scholar 

  • Kudoyarova G, Veselova S, Hartung W, Farkhutdinov RG, Veselov DS, Sharipova G (2011) Involvement of root ABA and hydraulic conductivity in the control of water relations in wheat plants exposed to increased evaporative demand. Planta 233:87–94

    PubMed  CAS  CrossRef  Google Scholar 

  • Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, Hartung W, Hwang I, Kwak JM, Lee IJ (2006) Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126:1109–1120

    PubMed  CAS  CrossRef  Google Scholar 

  • Li S, Assmann SM, Albert R (2006) Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol 4:e312

    PubMed  CrossRef  CAS  Google Scholar 

  • Liang J, Zhang J (1997) Collection of xylem sap at flow rate similar to in vivo transpiration flux. Plant Cell Physiol 38:1375–1381

    CAS  CrossRef  Google Scholar 

  • Ligat L, Lauber E, Albenne C, San Clemente H, Valot B, Zivy M, Pont-Lezica R, Arlat M, Jamet E (2011) Analysis of the xylem sap proteome of Brassica oleracea reveals a high content in secreted proteins. Proteomics 11:1798–1813

    PubMed  CAS  CrossRef  Google Scholar 

  • Lindsey K, Casson S, Chilley P (2002) Peptides: new signalling molecules in plants. Trends Plant Sci 7:78–83

    PubMed  CAS  CrossRef  Google Scholar 

  • Liu L, McDonald AJS, Stadenberg I, Davies WJ (2001) Stomatal and leaf growth responses to partial drying of root tips in willow. Tree Physiol 21:765–770

    PubMed  CAS  CrossRef  Google Scholar 

  • Liu FL, Jensen CR, Andersen MN (2003) Hydraulic and chemical signals in the control of leaf expansion and stomatal conductance in soybean exposed to drought stress. Funct Plant Biol 30:65–73

    CAS  CrossRef  Google Scholar 

  • Liu F, Jensen CR, Andersen MN (2005) A review of drought adaptation in crop plants: changes in vegetative and reproductive physiology induced by ABA-based chemical signals. Aust J Agric Res 56:1245–1252

    CAS  CrossRef  Google Scholar 

  • Loveys BR (1977) The intracellular location of abscisic acid in stressed and non-stressed leaf tissue. Physiol Plant 40:6–10

    CAS  CrossRef  Google Scholar 

  • Lü B, Chen F, Gong ZH, Xie H, Zhang JH, Liang JS (2007) Intracellular localization of integrin-like protein and its roles in osmotic stress-induced abscisic acid biosynthesis in Zea mays. Protoplasma 232:35–43

    PubMed  CrossRef  CAS  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068

    PubMed  CAS  Google Scholar 

  • Mahouachi J, Arbona V, Gómez-Cadenas A (2007) Hormonal changes in papaya seedlings subjected to progressive water stress and re-watering. Plant Growth Regul 53:43–51

    CAS  CrossRef  Google Scholar 

  • Mosquna A, Peterson FC, Park SY, Lozano-Juste J, Volkman BF, Cutler SR (2011) Potent and selective activation of abscisic acid receptors in vivo by mutational stabilization of their agonist-bound conformation. Proc Natl Acad Sci USA 108:20838–20843

    PubMed  CAS  CrossRef  Google Scholar 

  • Munns R, King RW (1988) Abscisic acid is not the only stomatal inhibitor in the transpiration stream of wheat plants. Plant Physiol 88:703–708

    PubMed  CAS  CrossRef  Google Scholar 

  • Munns R, Passioura JB, Milborrow BV, James RA, Close TJ (1993) Stored xylem sap from wheat and barley in drying soil contains a transpiration inhibitor with a large molecular size. Plant Cell Environ 16:867–872

    CAS  CrossRef  Google Scholar 

  • Neumann PM (2007) Evidence for long distance xylem transport of signal peptide activity from tomato roots. J Exp Bot 58:2217–2223

    PubMed  CAS  CrossRef  Google Scholar 

  • Neumann PM (2008) Coping mechanisms for crop plants in drought-prone environments. Ann Bot 101:901–907

    PubMed  CAS  CrossRef  Google Scholar 

  • Neumann PM, Chazen O, Bogoslavsky L, Hartung W (1997) Role of root derived ABA in regulating early leaf growth responses to water deficits. In: Altman A, Waisel Y (eds) Biology of root formation and development. Plenum, New York, pp 147–154

    CrossRef  Google Scholar 

  • Nishimura N, Hitomi K, Arvai AS, Rambo RP, Hitomis C, Cutler SR, Schroeder JI, Getzoff ED (2009) Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326:1373–1379

    PubMed  CAS  CrossRef  Google Scholar 

  • Parent B, Hachez C, Redondo E, Simonneau T, Chaumont F, Tardieu F (2009) Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: a trans-scale approach. Plant Physiol 149:2000–2012

    PubMed  CAS  CrossRef  Google Scholar 

  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodrigues PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutter SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    PubMed  CAS  Google Scholar 

  • Passioura JB (1996) Drought and drought tolerance. Plant Growth Regul 20:79–83

    CAS  CrossRef  Google Scholar 

  • Patonnier M, Peltier J, Marigo G (1999) Drought-induced increase in xylem malate and mannitol concentrations and closure of Fraxinus excelsior L. stomata. J Exp Bot 50:1223–1231

    CAS  Google Scholar 

  • Peterlunger E, Maragoni B, Testolin R, Vizzotto G, Costa G (1990) Carbohydrates, organic acids and mineral elements in xylem sap bleeding from kiwifruit canes. Acta Hortic 282:273–282

    Google Scholar 

  • Pierik R, Tholen D, Poorter H, Visser EJW, Voesenek LACJ (2006) The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci 11:176–183

    PubMed  CAS  CrossRef  Google Scholar 

  • Priest DM, Ambrose SJ, Vaistij FE, Elias L, Higgins GS, Ross AR, Abrams SR, Bowles DJ (2006) Use of the glucosyltransferase UGT71B6 to disturb abscisic acid homeostasis in Arabidopsis thaliana. Plant J 46:492–502

    PubMed  CAS  CrossRef  Google Scholar 

  • Prokic LJ, Jovanovic Z, McAinsh MR, Vucinic Z, Stikic R (2006) Species-dependent changes in stomatal sensitivity to abscisic acid mediated by external pH. J Exp Bot 57:675–683

    PubMed  CAS  CrossRef  Google Scholar 

  • Qin X, Zeevaart JAD (1999) The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci USA 96:15354–15361

    PubMed  CAS  CrossRef  Google Scholar 

  • Radin JW, Parker LL, Guinn G (1982) Water relations of cotton plants under nitrogen deficiency. V. Environmental control of abscisic acid accumulation and stomatal sensitivity to abscisic acid. Plant Physiol 70:1066–1070

    PubMed  CAS  CrossRef  Google Scholar 

  • Rajala A, Peltonen-Sainio P (2001) Plant growth regulator effects on spring cereal root and shoot growth. Agron J 93:936–943

    CAS  CrossRef  Google Scholar 

  • Reinoso H, Sosa L, Reginato M, Luna V (2005) Histological alterations induced by sodium sulfate in the vegetative anatomy of Prosopis strombulifera (Lam.) Benth. World J Agric Sci 1:109–119

    Google Scholar 

  • Ren Y, Chen L, Zhang Y, Kang X, Zhang Z, Wang Y (2012) Identification of novel and conserved Populus tomentosa microRNA as components of a response to water stress. Funct Integr Genomics 12:327–339

    PubMed  CAS  CrossRef  Google Scholar 

  • Ryan CA, Pearce G, Scheer J, Moura DS (2002) Polypeptide hormones. Plant Cell 14:S251–S264

    PubMed  CAS  Google Scholar 

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449

    PubMed  CAS  CrossRef  Google Scholar 

  • Santiago J, Dupeux F, Betz K, Antoni R, Gonzalez-Guzman M, Rodriguez L, Marquez JA, Rodriguez PL (2012) Structural insights into PYR/PYL/RCAR ABA receptors and PP2Cs. Plant Sci 182:3–11

    PubMed  CAS  CrossRef  Google Scholar 

  • Sauter A, Hartung W (2000) Radial transport of abscisic acid conjugates in maize roots: its implication for long distance stress signals. J Exp Bot 51:929–935

    PubMed  CAS  CrossRef  Google Scholar 

  • Sauter A, Hartung W (2002) The contribution of internode and mesocotyl tissues to root-to-shoot signalling of abscisic acid. J Exp Bot 53:297–302

    PubMed  CAS  CrossRef  Google Scholar 

  • Schachtman DP, Goodger JQD (2008) Chemical root to shoot signaling under drought. Trends Plant Sci 13:281–287

    PubMed  CAS  CrossRef  Google Scholar 

  • Schachtman DP, Shin R (2007) Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol 58:47–69

    PubMed  CAS  CrossRef  Google Scholar 

  • Scheible WR, Gonzalez-Fontes A, Lauerer M, Muller-Rober B, Caboche M, Stitt M (1997) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9:783–798

    PubMed  CAS  Google Scholar 

  • Schell J (1997) Interdependence of pH, malate concentration, and calcium and magnesium concentrations in the xylem sap of beech roots. Tree Physiol 17:479–483

    PubMed  CAS  CrossRef  Google Scholar 

  • Schraut D, Heilmeier H, Hartung W (2005) Radial transport of water and abscisic acid (ABA) in roots of Zea mays under conditions of nutrient deficiency. J Exp Bot 56:879–886

    PubMed  CAS  CrossRef  Google Scholar 

  • Senden MHMN, Van der Meer AJGM, Limborgh J, Wolterbeek HT (1992) Analysis of major tomato xylem organic acids and PITC-derivatives of amino acids by RP-HPLC and UV detection. Plant Soil 142:81–89

    CAS  Google Scholar 

  • Sharp RE (2002) Interaction with ethylene: changing views on the role of abscisic acid in root and shoot responses to water stress. Plant Cell Environ 25:211–222

    PubMed  CAS  CrossRef  Google Scholar 

  • Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, Nguyen HT (2004) Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot 55:2343–2351

    PubMed  CAS  CrossRef  Google Scholar 

  • Sheard LB, Zheng N (2009) Signal advance for abscisic acid. Nature 462:575–576

    PubMed  CAS  CrossRef  Google Scholar 

  • Sobeih W, Dodd IC, Bacon MA, Grierson DC, Davies WJ (2004) Long-distance signals regulating stomatal conductance and leaf growth in tomato (Lycopersicon esculentum) plants subjected to partial rootzone drying. J Exp Bot 55:2353–2364

    PubMed  CAS  CrossRef  Google Scholar 

  • Song X, She X, Zhang B (2008) Carbon monoxide-induced stomatal closure in Vicia faba is dependent on nitric oxide synthesis. Physiol Plant 132:514–525

    PubMed  CAS  CrossRef  Google Scholar 

  • Spollen WG, LeNoble ME, Samuels TD, Bernstein N, Sharp RE (2000) Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. Plant Physiol 122:967–976

    PubMed  CAS  CrossRef  Google Scholar 

  • Stoll M, Loveys BR, Dry PR (2000) Hormonal changes induced by partial rootzone drying of irrigated grapevine. J Exp Bot 51:1627–1634

    PubMed  CAS  CrossRef  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J, Zhu J-K (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    PubMed  CAS  CrossRef  Google Scholar 

  • Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S (2005) Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol 138:2337–2343

    PubMed  CAS  CrossRef  Google Scholar 

  • Tardieu F, Parent B, Simonneau T (2010) Control of leaf growth by abscisic acid: hydraulic or non-hydraulic processes? Plant Cell Environ 33:636–647

    PubMed  CrossRef  Google Scholar 

  • Teplova I, Farkhutdinov RG, Mitrichenko AN, Ivanov II, Veselov SY, Valcke RL, Kudoyarova GR (2000) Response of tobacco plants transformed with the ipt gene to elevated temperature. Russ J Plant Physl 47:367–369

    CAS  Google Scholar 

  • Thompson AJ, Mulholland BJ, Jackson AC, McKee JMT, Hilton HW, Symonds RC, Sonneveld T, Burbidge A, Stevenson P, Taylor IB (2007) Regulation and manipulation of ABA biosynthesis in roots. Plant Cell Environ 30:67–78

    PubMed  CAS  CrossRef  Google Scholar 

  • Tiekstra AE, Else MA, Jackson MB (2000) External pressures based on leaf water potentials do not induce xylem sap flow at rates of whole plant transpiration from roots of flooded or well-drained tomato and maize plants. Impact of shoot hydraulic resistances. Ann Bot 86:665–674

    CAS  CrossRef  Google Scholar 

  • Vartanian N, Marcotte L, Giraudat J (1994) Drought rhizogenesis in Arabidopsis thaliana (differential responses of hormonal mutants). Plant Physiol 104:761–767

    PubMed  CAS  Google Scholar 

  • Vysotskaya LB, Kudoyarova GR, Veselov SY, Jones HG (2004) Effect of partial root excision on transpiration, root hydraulic conductance and leaf growth in wheat seedlings. Plant Cell Environ 27:69–77

    CAS  CrossRef  Google Scholar 

  • Vysotskaya LB, Korobova AV, Veselov SY, Dodd IC, Kudoyarova GR (2009) ABA mediation of shoot cytokinin oxidase activity: assessing its impacts on cytokinin status and biomass allocation of nutrient deprived durum wheat. Funct Plant Biol 36:66–72

    CAS  CrossRef  Google Scholar 

  • Vysotskaya LB, Wilkinson S, Davies WJ, Arkhipova TN, Kudoyarova GR (2011) The effect of competition from neighbours on stomatal conductance in lettuce and tomato plants. Plant Cell Environ 34:729–737

    PubMed  CAS  CrossRef  Google Scholar 

  • Walton DC, Harrison MA, Cote P (1976) The effects of water stress on abscisic acid levels and metabolism in roots of Phaseolus vulgaris and other plants. Planta 131:141–144

    CAS  CrossRef  Google Scholar 

  • Wilkinson S (1999) pH as a stress signal. Plant Growth Regul 29:87–99

    CAS  CrossRef  Google Scholar 

  • Wilkinson S (2004) Water use efficiency and chemical signalling. In: Bacon MA (ed) Water use efficiency in plant biology. Blackwell, Oxford, pp 75–112

    Google Scholar 

  • Wilkinson S, Davies WJ (1997) Xylem sap pH increase: a drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplast. Plant Physiol 113:559–573

    PubMed  CAS  Google Scholar 

  • Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ 25:195–210

    PubMed  CAS  CrossRef  Google Scholar 

  • Wilkinson S, Davies WJ (2009) Ozone suppresses soil drying- and abscisic acid (ABA)-induced stomatal closure via an ethylene-dependent mechanism. Plant Cell Environ 32:949–959

    PubMed  CAS  CrossRef  Google Scholar 

  • Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33:510–525

    PubMed  CAS  CrossRef  Google Scholar 

  • Wilkinson S, Corlett JE, Oger L (1998) Effects of xylem pH on transpiration from wild-type and flacca tomato leaves: a vital role for abscisic acid in preventing excessive water loss even from well-watered plants. Plant Physiol 117:703–709

    PubMed  CAS  CrossRef  Google Scholar 

  • Wilkinson S, Bacon MA, Davies WJ (2007) Nitrate signalling to stomata and growing leaves: interactions with soil drying, ABA, and xylem sap pH in maize. J Exp Bot 58:1705–1716

    PubMed  CAS  CrossRef  Google Scholar 

  • Wilkinson S, Kudoyarova GR, Veselov DS, Arkhipova TN, Davies WJ (2012) Plant hormone interactions: innovative targets for crop breeding and management. J Exp Bot 63:3499–3509

    PubMed  CAS  CrossRef  Google Scholar 

  • Zeevart JAD, Boyer GJ (1984) Accumulation and transport of abscisic acid and its metabolites in Ricinus and Xanthium. Plant Physiol 74:934–939

    CrossRef  Google Scholar 

  • Zhang J, Davies WJ (1989) Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil. Plant Cell Environ 12:73–81

    CAS  CrossRef  Google Scholar 

  • Zhang J, Tardieu F (1996) Relative contribution of apices and mature tissues to ABA synthesis in droughted maize root systems. Plant Cell Physiol 37:598–605

    CAS  CrossRef  Google Scholar 

  • Zhang J, Schurr U, Davies WJ (1987) Control of stomatal behaviour by abscisic acid which apparently originates in the roots. J Exp Bot 38:1174–1181

    CAS  CrossRef  Google Scholar 

  • Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590

    PubMed  CAS  CrossRef  Google Scholar 

Download references

Acknowledgement

This work was funded by a grant from the Australian Research Council (Project DP1094530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Q. D. Goodger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goodger, J.Q.D. (2013). Long-Distance Signals Produced by Water-Stressed Roots. In: Baluška, F. (eds) Long-Distance Systemic Signaling and Communication in Plants. Signaling and Communication in Plants, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36470-9_5

Download citation