Skip to main content

Systemic Epigenetic Signaling in Plants

Part of the Signaling and Communication in Plants book series (SIGCOMM,volume 19)

Abstract

Plants have developed a plethora of signaling pathways which allow them to respond quickly to the alterations in the environmental conditions in order to reduce their negative impact. Emerging evidence indicates that vascular plants can memorize changes in the transcriptome profile after stress exposure and in some cases propagate it into the next generation. This phenomenon is termed “transgenerational inheritance.” Curiously, short-term and transgenerational plasticity of plant phenotypes does not involve changes in the DNA sequence, but instead involve reversible changes in chromatin structure that determine DNA accessibility for transcriptional factors. Chromatin structure reshaping depends on epigenetic factors, such as DNA methylation, histone posttranslational modifications/replacements, and small RNA (smRNA) metabolism, which form a flexible self-reinforcing loop of gene regulation. In the following chapter, we will provide some examples of gene activity regulation through alterations in the epigenetic profile in response to environmental stimuli. Additionally, we will discuss a systemic propagation of the acquired stress-induced epigenetic changes into the progeny and the possible contribution of epigenetic components to the process of plant adaptation and acclimation.

Keywords

  • Transgenerational inheritance
  • Systemic epigenetic signalling
  • Small non-coding RNAs
  • Chromatin structure
  • Epigenetic reprogramming

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-36470-9_4
  • Chapter length: 34 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-36470-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

References

  • Aina R, Sgorbati S, Santagostino A, Labra M, Ghiani A, Citterio S (2004) Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiol Plant 121:472–480

    CAS  CrossRef  Google Scholar 

  • Ali GS, Reddy AS (2008) Regulation of alternative splicing of pre-mRNAs by stresses. Curr Top Microbiol Immunol 326:257–275

    PubMed  CAS  CrossRef  Google Scholar 

  • Allen E, Howell MD (2010) miRNAs in the biogenesis of trans-acting siRNAs in higher plants. Semin Cell Dev Biol 21:798–804

    PubMed  CAS  CrossRef  Google Scholar 

  • Antoniades CA, Watts C (2013) Huntington’s disease and cell therapies: past, present and future. In: Baluska F (ed) Long-distance systemic signaling and communication in plants, Signaling and communication in plants. Springer, Heidelberg

    Google Scholar 

  • Baek D, Jiang J, Chung JS, Wang B, Chen J, Xin Z, Shi H (2011) Regulated AtHKT1 gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance. Plant Cell Physiol 52:149–161

    PubMed  CAS  CrossRef  Google Scholar 

  • Baroux C, Raissig MT, Grossniklaus U (2011) Epigenetic regulation and reprogramming during gamete formation in plants. Curr Opin Genet Dev 21:124–133

    PubMed  CAS  CrossRef  Google Scholar 

  • Baubec T, Dinh HQ, Pecinka A, Rakic B, Rozhon W, Wohlrab B, von Haeseler A, Scheid OM (2010) Cooperation of multiple chromatin modifications can generate unanticipated stability of epigenetic states in Arabidopsis. Plant Cell 22:34–47

    PubMed  CAS  CrossRef  Google Scholar 

  • Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412

    PubMed  CAS  CrossRef  Google Scholar 

  • Berr A, Menard R, Heitz T, Shen WH (2012) Chromatin modification and remodelling: a regulatory landscape for the control of Arabidopsis defence responses upon pathogen attack. Cell Microbiol 14:829–839

    PubMed  CAS  CrossRef  Google Scholar 

  • Bezhani S, Winter C, Hershman S, Wagner JD, Kennedy JF, Kwon CS, Pfluger J, Su Y, Wagner D (2007) Unique, shared, and redundant roles for the Arabidopsis SWI/SNF chromatin remodeling ATPases BRAHMA and SPLAYED. Plant Cell 19:403–416

    PubMed  CAS  CrossRef  Google Scholar 

  • Bilichak A, Ilnystkyy Y, Hollunder J, Kovalchuk I (2012) The progeny of Arabidopsis thaliana plants exposed to salt exhibit changes in DNA methylation, histone modifications and gene expression. PloS One 7:e30515

    PubMed  CAS  CrossRef  Google Scholar 

  • Bird A (2007) Perceptions of epigenetics. Nature 447:396–398

    PubMed  CAS  CrossRef  Google Scholar 

  • Bjedov I, Tenaillon O, Gerard B, Souza V, Denamur E, Radman M, Taddei F, Matic I (2003) Stress-induced mutagenesis in bacteria. Science 300:1404–1409

    PubMed  CAS  CrossRef  Google Scholar 

  • Blodner C, Goebel C, Feussner I, Gatz C, Polle A (2007) Warm and cold parental reproductive environments affect seed properties, fitness, and cold responsiveness in Arabidopsis thaliana progenies. Plant Cell Environ 30:165–175

    PubMed  CAS  CrossRef  Google Scholar 

  • Bonasio R, Tu S, Reinberg D (2010) Molecular signals of epigenetic states. Science 330:612–616

    PubMed  CAS  CrossRef  Google Scholar 

  • Bonisch C, Hake SB (2012) Histone H2A variants in nucleosomes and chromatin: more or less stable? Nucleic Acids Res 40(21):10719–10741

    PubMed  CrossRef  CAS  Google Scholar 

  • Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    PubMed  CAS  CrossRef  Google Scholar 

  • Bourc’his D, Voinnet O (2010) A small-RNA perspective on gametogenesis, fertilization, and early zygotic development. Science 330:617–622

    PubMed  CrossRef  CAS  Google Scholar 

  • Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Gorlach J (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13:1499–1510

    PubMed  CAS  Google Scholar 

  • Boyko A, Kovalchuk I (2011) Genome instability and epigenetic modification – heritable responses to environmental stress? Curr Opin Plant Biol 14:260–266

    PubMed  CrossRef  Google Scholar 

  • Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, Hollunder J, Meins F Jr, Kovalchuk I (2010) Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins. PloS One 5:e9514

    PubMed  CrossRef  Google Scholar 

  • Bratzel F, Lopez-Torrejon G, Koch M, Del Pozo JC, Calonje M (2010) Keeping cell identity in Arabidopsis requires PRC1 RING-finger homologs that catalyze H2A monoubiquitination. Curr Biol 20:1853–1859

    PubMed  CAS  CrossRef  Google Scholar 

  • Brosnan CA, Mitter N, Christie M, Smith NA, Waterhouse PM, Carroll BJ (2007) Nuclear gene silencing directs reception of long-distance mRNA silencing in Arabidopsis. Proc Natl Acad Sci USA 104:14741–14746

    PubMed  CAS  CrossRef  Google Scholar 

  • Calarco JP, Borges F, Donoghue MT, Van Ex F, Jullien PE, Lopes T, Gardner R, Berger F, Feijo JA, Becker JD, Martienssen RA (2012) Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151:194–205

    PubMed  CAS  CrossRef  Google Scholar 

  • Camporeale G, Oommen AM, Griffin JB, Sarath G, Zempleni J (2007) K12-biotinylated histone H4 marks heterochromatin in human lymphoblastoma cells. J Nutr Biochem 18:760–768

    PubMed  CAS  CrossRef  Google Scholar 

  • Cao X, Jacobsen SE (2002) Role of the arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol 12:1138–1144

    PubMed  CAS  CrossRef  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    PubMed  CAS  CrossRef  Google Scholar 

  • Cerda S, Weitzman SA (1997) Influence of oxygen radical injury on DNA methylation. Mutat Res 386:141–152

    PubMed  CAS  CrossRef  Google Scholar 

  • Chen M, Lv S, Meng Y (2010) Epigenetic performers in plants. Dev Growth Differ 52:555–566

    PubMed  CAS  CrossRef  Google Scholar 

  • Cheung WL, Ajiro K, Samejima K, Kloc M, Cheung P, Mizzen CA, Beeser A, Etkin LD, Chernoff J, Earnshaw WC, Allis CD (2003) Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 113:507–517

    PubMed  CAS  CrossRef  Google Scholar 

  • Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    PubMed  CAS  CrossRef  Google Scholar 

  • Chodavarapu RK, Feng S, Bernatavichute YV, Chen P-Y, Stroud H, Yu Y, Hetzel JA, Kuo F, Kim J, Cokus SJ, Casero D, Bernal M, Huijser P, Clark AT, Kramer U, Merchant SS, Zhang X, Jacobsen SE, Pellegrini M (2010) Relationship between nucleosome positioning and DNA methylation. Nature 466:388–392

    PubMed  CAS  CrossRef  Google Scholar 

  • Choi CS, Sano H (2007) Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Genet Genomics 277:589–600

    PubMed  CAS  CrossRef  Google Scholar 

  • Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    PubMed  CAS  CrossRef  Google Scholar 

  • Courey AJ, Jia S (2001) Transcriptional repression: the long and the short of it. Genes Dev 15:2786–2796

    PubMed  CAS  Google Scholar 

  • de la Serna IL, Ohkawa Y, Imbalzano AN (2006) Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat Rev Genet 7:461–473

    PubMed  CrossRef  CAS  Google Scholar 

  • De Nadal E, Zapater M, Alepuz PM, Sumoy L, Mas G, Posas F (2004) The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature 427:370–374

    PubMed  CrossRef  CAS  Google Scholar 

  • Deal RB, Topp CN, McKinney EC, Meagher RB (2007) Repression of flowering in Arabidopsis requires activation of FLOWERING LOCUS C expression by the histone variant H2A.Z. Plant Cell 19:74–83

    PubMed  CAS  CrossRef  Google Scholar 

  • DeBolt S (2010) Copy number variation shapes genome diversity in Arabidopsis over immediate family generational scales. Genome Biol Evol 2:441–453

    PubMed  CrossRef  CAS  Google Scholar 

  • De-La-Pena C, Rangel-Cano A, Alvarez-Venegas R (2012) Regulation of disease-responsive genes mediated by epigenetic factors: interaction of Arabidopsis-Pseudomonas. Mol Plant Pathol 13:388–398

    PubMed  CAS  CrossRef  Google Scholar 

  • Dhawan R, Luo H, Foerster AM, Abuqamar S, Du HN, Briggs SD, Mittelsten Scheid O, Mengiste T (2009) HISTONE MONOUBIQUITINATION1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis. Plant Cell 21:1000–1019

    PubMed  CAS  CrossRef  Google Scholar 

  • Dickinson HG, Grant-Downton R (2009) Bridging the generation gap: flowering plant gametophytes and animal germlines reveal unexpected similarities. Biol Rev Camb Philos Soc 84:589–615

    PubMed  CrossRef  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    CAS  CrossRef  Google Scholar 

  • Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR, Dixon JE, Ecker JR (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci USA 109:E2183–E2191

    PubMed  CAS  CrossRef  Google Scholar 

  • Drews GN, Koltunow AM (2011) The female gametophyte. The Arabidopsis Book 9:e0155

    PubMed  Google Scholar 

  • Dunoyer P, Himber C, Voinnet O (2005) DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nat Genet 37:1356–1360

    PubMed  CAS  CrossRef  Google Scholar 

  • Dyachenko OV, Zakharchenko NS, Shevchuk TV, Bohnert HJ, Cushman JC, Buryanov YI (2006) Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress. Biochem Biokhim 71:461–465

    CAS  CrossRef  Google Scholar 

  • Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330:622–627

    PubMed  CAS  CrossRef  Google Scholar 

  • Filichkin SA, Priest HD, Givan SA, Shen R, Bryant DW, Fox SE, Wong WK, Mockler TC (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 20:45–58

    PubMed  CAS  CrossRef  Google Scholar 

  • Foster PL (2007) Stress-induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol 42:373–397

    PubMed  CAS  CrossRef  Google Scholar 

  • Galaud J-P, Gaspar T, Boyer N (1993) Inhibition of internode growth due to mechanical stress in Bryonia dioica: relationship between changes in DNA methylation and ethylene metabolism. Physiol Plant 87:25–30

    CAS  CrossRef  Google Scholar 

  • Galloway L, Etterson J (2007) Transgenerational plasticity is adaptive in the wild. Science 318:1134–1136

    PubMed  CAS  CrossRef  Google Scholar 

  • Gehring M, Bubb KL, Henikoff S (2009) Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324:1447–1451

    PubMed  CAS  CrossRef  Google Scholar 

  • Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14:121–141

    PubMed  CAS  Google Scholar 

  • Grativol C, Hemerly AS, Ferreira PC (2012) Genetic and epigenetic regulation of stress responses in natural plant populations. Biochim Biophys Acta 1819:176–185

    PubMed  CAS  CrossRef  Google Scholar 

  • Guillemette B, Bataille AR, Gevry N, Adam M, Blanchette M, Robert F, Gaudreau L (2005) Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol 3:2100–2110

    CAS  CrossRef  Google Scholar 

  • Guleria P, Mahajan M, Bhardwaj J, Yadav SK (2011) Plant small RNAs: biogenesis, mode of action and their roles in abiotic stresses. Genomics Proteomics Bioinformatics 9:183–199

    PubMed  CAS  CrossRef  Google Scholar 

  • Gutzat R, Mittelsten Scheid O (2012) Epigenetic responses to stress: triple defense? Curr Opin Plant Biol 15(5):568–573

    PubMed  CAS  CrossRef  Google Scholar 

  • Haag JR, Pikaard CS (2011) Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat Rev Mol Cell Biol 12:483–492

    PubMed  CAS  CrossRef  Google Scholar 

  • Hamilton A, Voinnet O, Chappell L, Baulcombe D (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21:4671–4679

    PubMed  CAS  CrossRef  Google Scholar 

  • Henderson IR, Jacobsen SE (2007) Epigenetic inheritance in plants. Nature 447:418–424

    PubMed  CAS  CrossRef  Google Scholar 

  • Himanen K, Woloszynska M, Boccardi TM, De Groeve S, Nelissen H, Bruno L, Vuylsteke M, Van Lijsebettens M (2012) Histone H2B monoubiquitination is required to reach maximal transcript levels of circadian clock genes in Arabidopsis. Plant J 72:249–260

    PubMed  CAS  CrossRef  Google Scholar 

  • Himber C, Dunoyer P, Moissiard G, Ritzenthaler C, Voinnet O (2003) Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J 22:4523–4533

    PubMed  CAS  CrossRef  Google Scholar 

  • Houben A, Demidov D, Caperta AD, Karimi R, Agueci F, Vlasenko L (2007) Phosphorylation of histone H3 in plants–a dynamic affair. Biochim Biophys Acta 1769:308–315

    PubMed  CAS  CrossRef  Google Scholar 

  • Hsieh LC, Lin SI, Shih AC, Chen JW, Lin WY, Tseng CY, Li WH, Chiou TJ (2009) Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151:2120–2132

    PubMed  CrossRef  Google Scholar 

  • Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472:115–119

    PubMed  CAS  CrossRef  Google Scholar 

  • Jaskiewicz M, Conrath U, Peterhansel C (2011) Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 12:50–55

    PubMed  CAS  CrossRef  Google Scholar 

  • Johnson TB, Coghill RD (1925) Researches on pyrimidines: C111. The discovery of 5-methyl-cytosine in tuberculinic acid, the nucleic acid of the tubercle bacillus1. J Am Chem Soc 47:2838–2844

    CAS  CrossRef  Google Scholar 

  • Kathiria P, Sidler C, Golubov A, Kalischuk M, Kawchuk LM, Kovalchuk I (2010) Tobacco mosaic virus infection results in an increase in recombination frequency and resistance to viral, bacterial, and fungal pathogens in the progeny of infected tobacco plants. Plant Physiol 153:1859–1870

    PubMed  CAS  CrossRef  Google Scholar 

  • Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A Jr, Zhu JK, Staskawicz BJ, Jin H (2006) A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci USA 103:18002–18007

    PubMed  CAS  CrossRef  Google Scholar 

  • Khorasanizadeh S (2004) The nucleosome: from genomic organization to genomic regulation. Cell 116:259–272

    PubMed  CAS  CrossRef  Google Scholar 

  • Kim DH, Sung S (2012) Environmentally coordinated epigenetic silencing of FLC by protein and long noncoding RNA components. Curr Opin Plant Biol 15:51–56

    PubMed  CAS  CrossRef  Google Scholar 

  • Kim KC, Lai Z, Fan B, Chen Z (2008a) Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20:2357–2371

    PubMed  CAS  CrossRef  Google Scholar 

  • Kim S, Yang JY, Xu J, Jang IC, Prigge MJ, Chua NH (2008b) Two cap-binding proteins CBP20 and CBP80 are involved in processing primary MicroRNAs. Plant Cell Physiol 49:1634–1644

    PubMed  CAS  CrossRef  Google Scholar 

  • Kim JY, Kwak KJ, Jung HJ, Lee HJ, Kang H (2010) MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER-LIKE Protein3 mRNA. Plant Cell Physiol 51:1079–1083

    PubMed  CAS  CrossRef  Google Scholar 

  • Kobor MS, Venkatasubrahmanyam S, Meneghini MD, Gin JW, Jennings JL, Link AJ, Madhani HD, Rine J (2004) A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol 2:E131

    PubMed  CrossRef  Google Scholar 

  • Koturbash I, Baker M, Loree J, Kutanzi K, Hudson D, Pogribny I, Sedelnikova O, Bonner W, Kovalchuk O (2006) Epigenetic dysregulation underlies radiation-induced transgenerational genome instability in vivo. Int J Radiat Oncol Biol Phys 66:327–330

    PubMed  CAS  CrossRef  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    PubMed  CAS  CrossRef  Google Scholar 

  • Kovalchuk I, Kovalchuk O (2012) Epigenetics in health and disease, 1st edn. FT Press, Upper Saddle River, NJ

    Google Scholar 

  • Kovarik A, Koukalová B, Bezdek M, Opatrny Z (1997) Hypermethylation of tobacco heterochromatic loci in response to osmotic stress. Theor Appl Genet 95:301–306

    CrossRef  Google Scholar 

  • Krasnikova MS, Milyutina IA, Bobrova VK, Ozerova LV, Troitsky AV, Solovyev AG, Morozov SY (2009) Novel miR390-dependent transacting siRNA precursors in plants revealed by a PCR-based experimental approach and database analysis. J Biomed Biotechnol 2009:952304

    PubMed  CAS  CrossRef  Google Scholar 

  • Kumar SV, Wigge PA (2010) H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140:136–147

    PubMed  CAS  CrossRef  Google Scholar 

  • Kwon CS, Wagner D (2007) Unwinding chromatin for development and growth: a few genes at a time. Trends Genet 23:403–412

    PubMed  CAS  CrossRef  Google Scholar 

  • Lang J, Smetana O, Sanchez-Calderon L, Lincker F, Genestier J, Schmit A-C, Houlné G, Chabouté M-E (2012) Plant γH2AX foci are required for proper DNA DSB repair responses and colocalize with E2F factors. New Phytol 194:353–363

    PubMed  CAS  CrossRef  Google Scholar 

  • Lang-Mladek C, Popova O, Kiok K, Berlinger M, Rakic B, Aufsatz W, Jonak C, Hauser MT, Luschnig C (2010) Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol Plant 3:594–602

    PubMed  CAS  CrossRef  Google Scholar 

  • Laubinger S, Sachsenberg T, Zeller G, Busch W, Lohmann JU, Ratsch G, Weigel D (2008) Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana. Proc Natl Acad Sci USA 105:8795–8800

    PubMed  CAS  CrossRef  Google Scholar 

  • Lauria M, Rossi V (2011) Epigenetic control of gene regulation in plants. Biochim Biophysica Acta 1809:369–378

    CAS  CrossRef  Google Scholar 

  • Law JA, Ausin I, Johnson LM, Vashisht AA, Zhu JK, Wohlschlegel JA, Jacobsen SE (2010) A protein complex required for polymerase V transcripts and RNA- directed DNA methylation in Arabidopsis. Curr Biol 20:951–956

    PubMed  CAS  CrossRef  Google Scholar 

  • Li X, Wang X, He K, Ma Y, Su N, He H, Stolc V, Tongprasit W, Jin W, Jiang J, Terzaghi W, Li S, Deng XW (2008) High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell 20:259–276

    PubMed  CAS  CrossRef  Google Scholar 

  • Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC, Doerge RW, Colot V, Martienssen R (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476

    PubMed  CAS  CrossRef  Google Scholar 

  • Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    PubMed  CAS  CrossRef  Google Scholar 

  • Liu C, Lu F, Cui X, Cao X (2010) Histone methylation in higher plants. Annu Rev Plant Biol 61:395–420

    PubMed  CAS  CrossRef  Google Scholar 

  • Loury R, Sassone-Corsi P (2004) Analysis of histone phosphorylation: coupling intracellular signaling to chromatin remodeling. Methods Enzymol 377:197–212

    PubMed  CAS  CrossRef  Google Scholar 

  • Luo M, Liu X, Singh P, Cui Y, Zimmerli L, Wu K (2012) Chromatin modifications and remodeling in plant abiotic stress responses. Biochim Biophysica Acta 1819:129–136

    CAS  CrossRef  Google Scholar 

  • Mallory A, Vaucheret H (2010) Form, function, and regulation of ARGONAUTE proteins. Plant Cell 22:3879–3889

    PubMed  CAS  CrossRef  Google Scholar 

  • March-Diaz R, Garcia-Dominguez M, Lozano-Juste J, Leon J, Florencio FJ, Reyes JC (2008) Histone H2A.Z and homologues of components of the SWR1 complex are required to control immunity in Arabidopsis. Plant J 53:475–487

    PubMed  CAS  CrossRef  Google Scholar 

  • Marques M, Laflamme L, Gervais AL, Gaudreau L (2010) Reconciling the positive and negative roles of histone H2A.Z in gene transcription. Epigenetics 5:267–272

    PubMed  CAS  CrossRef  Google Scholar 

  • Mason G, Noris E, Lanteri S, Acquadro A, Accotto G, Portis E (2008) Potentiality of methylation-sensitive amplification polymorphism (MSAP) in identifying genes involved in tomato response to tomato yellow leaf curl Sardinia Virus. Plant Mol Biol Rep 26:156–173

    CAS  CrossRef  Google Scholar 

  • McCue AD, Nuthikattu S, Reeder SH, Slotkin RK (2012) Gene expression and stress response mediated by the epigenetic regulation of a transposable element small RNA. PLoS Genet 8:e1002474

    PubMed  CAS  CrossRef  Google Scholar 

  • Melamed-Bessudo C, Levy AA (2012) Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis. Proc Natl Acad Sci USA 109:E981–E988

    PubMed  CAS  CrossRef  Google Scholar 

  • Meyers BC, Kaushik S, Nandety RS (2005) Evolving disease resistance genes. Curr Opin Plant Biol 8:129–134

    PubMed  CAS  CrossRef  Google Scholar 

  • Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267–274

    PubMed  CAS  CrossRef  Google Scholar 

  • Mirouze M, Lieberman-Lazarovich M, Aversano R, Bucher E, Nicolet J, Reinders J, Paszkowski J (2012) Loss of DNA methylation affects the recombination landscape in Arabidopsis. Proc Natl Acad Sci USA 109:5880–5885

    PubMed  CAS  CrossRef  Google Scholar 

  • Molinier J, Ries G, Zipfel C, Hohn B (2006) Transgeneration memory of stress in plants. Nature 442:1046–1049

    PubMed  CAS  CrossRef  Google Scholar 

  • Molnar A, Melnyk C, Baulcombe DC (2011) Silencing signals in plants: a long journey for small RNAs. Genome Biol 12:215

    PubMed  CAS  CrossRef  Google Scholar 

  • Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141

    PubMed  CAS  CrossRef  Google Scholar 

  • Mosher RA, Durrant WE, Wang D, Song J, Dong X (2006) A comprehensive structure-function analysis of Arabidopsis SNI1 defines essential regions and transcriptional repressor activity. Plant Cell 18:1750–1765

    PubMed  CAS  CrossRef  Google Scholar 

  • Nolin SL, Brown WT, Glicksman A, Houck GE Jr, Gargano AD, Sullivan A, Biancalana V, Brondum-Nielsen K, Hjalgrim H, Holinski-Feder E, Kooy F, Longshore J, Macpherson J, Mandel JL, Matthijs G, Rousseau F, Steinbach P, Vaisanen ML, von Koskull H, Sherman SL (2003) Expansion of the fragile X CGG repeat in females with premutation or intermediate alleles. Am J Hum Genet 72:454–464

    PubMed  CAS  CrossRef  Google Scholar 

  • Ou X, Zhang Y, Xu C, Lin X, Zang Q, Zhuang T, Jiang L, von Wettstein D, Liu B (2012) Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.). PloS One 7:e41143

    PubMed  CAS  CrossRef  Google Scholar 

  • Palauqui JC, Balzergue S (1999) Activation of systemic acquired silencing by localised introduction of DNA. Curr Biol 9:59–66

    PubMed  CAS  CrossRef  Google Scholar 

  • Palauqui JC, Elmayan T, Pollien JM, Vaucheret H (1997) Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J 16:4738–4745

    PubMed  CAS  CrossRef  Google Scholar 

  • Palma K, Thorgrimsen S, Malinovsky FG, Fiil BK, Nielsen HB, Brodersen P, Hofius D, Petersen M, Mundy J (2010) Autoimmunity in Arabidopsis acd11 is mediated by epigenetic regulation of an immune receptor. PLoS Pathog 6:e1001137

    PubMed  CrossRef  CAS  Google Scholar 

  • Pavet V, Quintero C, Cecchini NM, Rosa AL, Alvarez ME (2006) Arabidopsis displays centromeric DNA hypomethylation and cytological alterations of heterochromatin upon attack by Pseudomonas syringae. Mol Plant-Microbe Interact 19:577–587

    PubMed  CAS  CrossRef  Google Scholar 

  • Pecinka A, Mittelsten Scheid O (2012) Stress-induced chromatin changes: a critical view on their heritability. Plant Cell Physiol 53:801–808

    PubMed  CAS  CrossRef  Google Scholar 

  • Pecinka A, Rosa M, Schikora A, Berlinger M, Hirt H, Luschnig C, Scheid OM (2009) Transgenerational stress memory is not a general response in Arabidopsis. PloS One 4:e5202

    PubMed  CrossRef  CAS  Google Scholar 

  • Pecinka A, Dinh HQ, Baubec T, Rosa M, Lettner N, Scheid OM (2010) Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 22:3118–3129

    PubMed  CAS  CrossRef  Google Scholar 

  • Pembrey ME, Bygren LO, Kaati G, Edvinsson S, Northstone K, Sjostrom M, Golding J (2006) Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet 14:159–166

    PubMed  CrossRef  Google Scholar 

  • Rahavi MR, Migicovsky Z, Titov V, Kovalchuk I (2011) Transgenerational adaptation to heavy metal salts in Arabidopsis. Front Plant Sci 2:91

    PubMed  CAS  CrossRef  Google Scholar 

  • Ramachandran V, Chen X (2008) Small RNA metabolism in Arabidopsis. Trends Plant Sci 13:368–374

    PubMed  CAS  CrossRef  Google Scholar 

  • Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W (2002) Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev 12:162–169

    PubMed  CAS  CrossRef  Google Scholar 

  • Roudier F, Ahmed I, Berard C, Sarazin A, Mary-Huard T, Cortijo S, Bouyer D, Caillieux E, Duvernois-Berthet E, Al-Shikhley L, Giraut L, Despres B, Drevensek S, Barneche F, Derozier S, Brunaud V, Aubourg S, Schnittger A, Bowler C, Martin-Magniette ML, Robin S, Caboche M, Colot V (2011) Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J 30:1928–1938

    PubMed  CAS  CrossRef  Google Scholar 

  • Rouget C, Papin C, Boureux A, Meunier AC, Franco B, Robine N, Lai EC, Pelisson A, Simonelig M (2010) Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature 467:1128–1132

    PubMed  CAS  CrossRef  Google Scholar 

  • Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510

    PubMed  CAS  CrossRef  Google Scholar 

  • Saez A, Rodrigues A, Santiago J, Rubio S, Rodriguez PL (2008) HAB1–SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis. Plant Cell 20:2972–2988

    PubMed  CAS  CrossRef  Google Scholar 

  • Saze H, Tsugane K, Kanno T, Nishimura T (2012) DNA methylation in plants: relationship to small RNAs and histone modifications, and functions in transposon inactivation. Plant Cell Physiol 53:766–784

    PubMed  CAS  CrossRef  Google Scholar 

  • Schmidt A, Wuest SE, Vijverberg K, Baroux C, Kleen D, Grossniklaus U (2011) Transcriptome analysis of the Arabidopsis megaspore mother cell uncovers the importance of RNA helicases for plant germline development. PLoS Biol 9:e1001155

    PubMed  CAS  CrossRef  Google Scholar 

  • Schwab R, Maizel A, Ruiz-Ferrer V, Garcia D, Bayer M, Crespi M, Voinnet O, Martienssen RA (2009) Endogenous TasiRNAs mediate non-cell autonomous effects on gene regulation in Arabidopsis thaliana. PloS One 4:e5980

    PubMed  CrossRef  CAS  Google Scholar 

  • Sha AH, Lin XH, Huang JB, Zhang DP (2005) Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis. Mol Genet Genomics 273:484–490

    PubMed  CAS  CrossRef  Google Scholar 

  • Slotkin RK, Vaughn M, Borges F, Tanurdzic M, Becker JD, Feijo JA, Martienssen RA (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461–472

    PubMed  CAS  CrossRef  Google Scholar 

  • Smith AP, Jain A, Deal RB, Nagarajan VK, Poling MD, Raghothama KG, Meagher RB (2010) Histone H2A.Z regulates the expression of several classes of phosphate starvation response genes but not as a transcriptional activator. Plant Physiol 152:217–225

    PubMed  CAS  CrossRef  Google Scholar 

  • Sokol A, Kwiatkowska A, Jerzmanowski A, Prymakowska-Bosak M (2007) Up-regulation of stress-inducible genes in tobacco and Arabidopsis cells in response to abiotic stresses and ABA treatment correlates with dynamic changes in histone H3 and H4 modifications. Planta 227:245–254

    PubMed  CAS  CrossRef  Google Scholar 

  • Sridha S, Wu K (2006) Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J 46:124–133

    PubMed  CAS  CrossRef  Google Scholar 

  • Sridhar VV, Kapoor A, Zhang K, Zhu J, Zhou T, Hasegawa PM, Bressan RA, Zhu JK (2007) Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature 447:735–738

    PubMed  CAS  CrossRef  Google Scholar 

  • Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277:37741–37746

    PubMed  CAS  CrossRef  Google Scholar 

  • Stockinger EJ, Mao Y, Regier MK, Triezenberg SJ, Thomashow MF (2001) Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res 29:1524–1533

    PubMed  CAS  CrossRef  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    PubMed  CAS  CrossRef  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    PubMed  CAS  CrossRef  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    PubMed  CAS  CrossRef  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J, Zhu J-K (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    PubMed  CAS  CrossRef  Google Scholar 

  • Tang Z, Zhang L, Xu C, Yuan S, Zhang F, Zheng Y, Zhao C (2012) Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing. Plant Physiol 159:721–738

    PubMed  CAS  CrossRef  Google Scholar 

  • Tariq M, Paszkowski J (2004) DNA and histone methylation in plants. Trends Genet 6:244–251

    CrossRef  CAS  Google Scholar 

  • Thiriet C, Hayes JJ (2005) Chromatin in need of a fix: phosphorylation of H2AX connects chromatin to DNA repair. Mol Cell 18:617–622

    PubMed  CAS  CrossRef  Google Scholar 

  • Tittel-Elmer M, Bucher E, Broger L, Mathieu O, Paszkowski J, Vaillant I (2010) Stress-induced activation of heterochromatic transcription. PLoS Genet 6:e1001175

    PubMed  CrossRef  CAS  Google Scholar 

  • Tricker PJ, Gibbings JG, Rodriguez Lopez CM, Hadley P, Wilkinson MJ (2012) Low relative humidity triggers RNA-directed de novo DNA methylation and suppression of genes controlling stomatal development. J Exp Bot 63:3799–3813

    PubMed  CAS  CrossRef  Google Scholar 

  • Turunen M, Latola K (2005) UV-B radiation and acclimation in timberline plants. Environ Pollut 137:390–403

    PubMed  CAS  CrossRef  Google Scholar 

  • van den Burg HA, Takken FLW (2009) Does chromatin remodeling mark systemic acquired resistance? Trends Plant Sci 14:286–294

    PubMed  CrossRef  CAS  Google Scholar 

  • Vance V, Vaucheret H (2001) RNA silencing in plants – defense and counterdefense. Science 292:2277–2280

    PubMed  CAS  CrossRef  Google Scholar 

  • Vaucheret H (2008) Plant ARGONAUTES. Trends Plant Sci 13:350–358

    PubMed  CAS  CrossRef  Google Scholar 

  • Vaughn MW, Tanurdzic M, Lippman Z, Jiang H, Carrasquillo R, Rabinowicz PD, Dedhia N, McCombie WR, Agier N, Bulski A, Colot V, Doerge RW, Martienssen RA (2007) Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol 5:e174

    PubMed  CrossRef  CAS  Google Scholar 

  • Vazquez F (2006) Arabidopsis endogenous small RNAs: highways and byways. Trends Plant Sci 11:460–468

    PubMed  CAS  CrossRef  Google Scholar 

  • Voinnet O, Baulcombe DC (1997) Systemic signalling in gene silencing. Nature 389(6651):553

    PubMed  CAS  CrossRef  Google Scholar 

  • Voinnet O, Vain P, Angell S, Baulcombe DC (1998) Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95:177–187

    PubMed  CAS  CrossRef  Google Scholar 

  • Walley JW, Rowe HC, Xiao Y, Chehab EW, Kliebenstein DJ, Wagner D, Dehesh K (2008) The chromatin remodeler SPLAYED regulates specific stress signaling pathways. PLoS Pathog 4:e1000237

    PubMed  CrossRef  CAS  Google Scholar 

  • Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ, Zhao K (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40:897–903

    PubMed  CAS  CrossRef  Google Scholar 

  • Wang X, Elling AA, Li X, Li N, Peng Z, He G, Sun H, Qi Y, Liu XS, Deng XW (2009) Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. Plant Cell 21:1053–1069

    PubMed  CAS  CrossRef  Google Scholar 

  • Wang WS, Pan YJ, Zhao XQ, Dwivedi D, Zhu LH, Ali J, Fu BY, Li ZK (2011) Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot 62:1951–1960

    PubMed  CAS  CrossRef  Google Scholar 

  • Weake VM, Workman JL (2008) Histone ubiquitination: triggering gene activity. Mol Cell 29:653–663

    PubMed  CAS  CrossRef  Google Scholar 

  • Wingard SA (1928) Hosts and symptoms of ring spot, a virus disease of plants. J Agric Res 37:127–153

    Google Scholar 

  • Wu K, Zhang L, Zhou C, Yu C-W, Chaikam V (2008) HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J Exp Bot 59:225–234

    PubMed  CAS  CrossRef  Google Scholar 

  • Xie Z, Khanna K, Ruan S (2010) Expression of microRNAs and its regulation in plants. Semin Cell Dev Biol 21:790–797

    PubMed  CAS  CrossRef  Google Scholar 

  • Yaegashi H, Tamura A, Isogai M, Yoshikawa N (2008) Inhibition of long-distance movement of RNA silencing signals in Nicotiana benthamiana by Apple chlorotic leaf spot virus 50 kDa movement protein. Virology 382:199–206

    PubMed  CAS  CrossRef  Google Scholar 

  • Yao Y, Kovalchuk I (2011) Abiotic stress leads to somatic and heritable changes in homologous recombination frequency, point mutation frequency and microsatellite stability in Arabidopsis plants. Mutat Res 707:61–66

    PubMed  CAS  CrossRef  Google Scholar 

  • Youngson NA, Whitelaw E (2008) Transgenerational epigenetic effects. Annu Rev Genomics Hum Genet 9:233–257

    PubMed  CAS  CrossRef  Google Scholar 

  • Zemach A, Kim MY, Silva P, Rodrigues JA, Dotson B, Brooks MD, Zilberman D (2010) Local DNA hypomethylation activates genes in rice endosperm. Proc Natl Acad Sci USA 107:18729–18734

    PubMed  CAS  CrossRef  Google Scholar 

  • Zhang K, Sridhar VV, Zhu J, Kapoor A, Zhu JK (2007a) Distinctive core histone post-translational modification patterns in Arabidopsis thaliana. PloS One 2:e1210

    PubMed  CrossRef  CAS  Google Scholar 

  • Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, Jacobsen SE (2007b) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5:e129

    PubMed  CrossRef  CAS  Google Scholar 

  • Zhang X, Henderson IR, Lu C, Green PJ, Jacobsen SE (2007c) Role of RNA polymerase IV in plant small RNA metabolism. Proc Natl Acad Sci USA 104:4536–4541

    PubMed  CAS  CrossRef  Google Scholar 

  • Zhang X, Xia J, Lii YE, Barrera-Figueroa BE, Zhou X, Gao S, Lu L, Niu D, Chen Z, Leung C, Wong T, Zhang H, Guo J, Li Y, Liu R, Liang W, Zhu JK, Zhang W, Jin H (2012) Genome-wide analysis of plant nat-siRNAs reveals insights into their distribution, biogenesis and function. Genome Biol 13:R20

    PubMed  CAS  CrossRef  Google Scholar 

  • Zheng X, Pontes O, Zhu J, Miki D, Zhang F, Li W-X, Iida K, Kapoor A, Pikaard CS, Zhu J-K (2008) ROS3 is an RNA-binding protein required for DNA demethylation in Arabidopsis. Nature 455:1259–1262

    PubMed  CAS  CrossRef  Google Scholar 

  • Zhou C, Zhang L, Duan J, Miki B, Wu K (2005) HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell 17:1196–1204

    PubMed  CAS  CrossRef  Google Scholar 

  • Zhou Y, Lu Y, Tian W (2012) Epigenetic features are significantly associated with alternative splicing. BMC Genomics 13:123

    PubMed  CAS  CrossRef  Google Scholar 

  • Zhu JK (2009) Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 43:43–166

    CrossRef  CAS  Google Scholar 

  • Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39:61–69

    PubMed  CAS  CrossRef  Google Scholar 

  • Zilberman D, Coleman-Derr D, Ballinger T, Henikoff S (2008) Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456:125–129

    PubMed  CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Kovalchuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bilichak, A., Kovalchuk, I. (2013). Systemic Epigenetic Signaling in Plants. In: Baluška, F. (eds) Long-Distance Systemic Signaling and Communication in Plants. Signaling and Communication in Plants, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36470-9_4

Download citation