Skip to main content

Long-Distance Signaling via Mobile RNAs

Part of the Signaling and Communication in Plants book series (SIGCOMM,volume 19)

Abstract

Beyond its role in moving sugars from source leaves to sinks, the phloem is an important conduit for transporting information molecules that function as signals responding to environmental and internal cues related to numerous aspects of physiology. One of the most prominent groups of these signaling molecules is full-length mRNAs. Thousands of full-length transcripts have been identified in sieve elements of the phloem, but only a few have been confirmed to be mobile. This chapter focuses on six RNAs that move long distance through the plant and have a documented role in regulating development. These include StBEL5 and POTH1 of potato, CmGAI of pumpkin, PFP-LeT6 from tomato, and Aux/IAA and FLOWERING LOCUS T from Arabidopsis. Their impact in controlling development and the mechanisms that facilitate their movement are discussed.

Keywords

  • Non-cell-autonomous
  • Phloem
  • Polypyrimidine tract-binding proteins
  • Potato
  • Signal
  • Vascular biology

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-36470-9_3
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-36470-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42

    Google Scholar 

  • Aravind L, Iyer LM, Anantharaman V (2003) The two faces of Alba: the evolutionary connection between proteins participating in chromatin structure and RNA metabolism. Genome Biol 4:R64

    PubMed  CrossRef  CAS  Google Scholar 

  • Auweter SD, Allain FHT (2008) Structure-function relationships of the polypyrimidine tract binding protein. Cell Mol Life Sci 65:516–527

    PubMed  CrossRef  CAS  Google Scholar 

  • Ayre BG, Blair JE, Turgeon R (2003) Functional and phylogenetic analyses of a conserved regulatory program in the phloem of minor veins. Plant Physiol 133:1229–1239

    PubMed  CrossRef  CAS  Google Scholar 

  • Bai S, Kasai A, Yamada K, Li T, Harada T (2011) A mobile signal transported over a long distance induces systemic transcriptional gene silencing in a grafted partner. J Exp Bot 62:4561–4570

    PubMed  CrossRef  CAS  Google Scholar 

  • Banerjee AK, Chatterjee M, Yu Y, Suh SG, Miller WA, Hannapel DJ (2006) Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. Plant Cell 18:3443–3457

    PubMed  CrossRef  CAS  Google Scholar 

  • Banerjee AK, Lin T, Hannapel DJ (2009) Untranslated regions of a mobile transcript mediate RNA metabolism. Plant Physiol 151:1831–1843

    PubMed  CrossRef  CAS  Google Scholar 

  • Böhlenius H, Eriksson S, Parcy F, Nilsson O (2007) Retraction. Science 316:367

    PubMed  CrossRef  Google Scholar 

  • Chatterjee M, Banerjee AK, Hannapel DJ (2007) A BELL1-like gene of potato is light activated and wound inducible. Plant Physiol 145:1435–1443

    PubMed  CrossRef  CAS  Google Scholar 

  • Chen H, Rosin FM, Prat S, Hannapel DJ (2003) Interacting transcription factors from the TALE superclass regulate tuber formation. Plant Physiol 132:1391–1404

    PubMed  CrossRef  CAS  Google Scholar 

  • Chen H, Banerjee AK, Hannapel DJ (2004) The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20ox1. Plant J 38:276–284

    PubMed  CrossRef  CAS  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    PubMed  CrossRef  CAS  Google Scholar 

  • David-Schwartz R, Runo S, Townsley B, Machuka J, Sinha N (2008) Long-distance transport of mRNA via parenchyma cells and phloem across the host-parasite junction in Cuscuta. New Phytol 179:1133–1141

    PubMed  CrossRef  CAS  Google Scholar 

  • Du TG, Schmid M, Jansen RP (2007) Why cells move messages: the biological functions of mRNA localization. Semin Cell Dev Biol 18:171–177

    PubMed  CrossRef  CAS  Google Scholar 

  • Elvira G, Massie B, DesGroseillers L (2006) The zinc-finger protein ZFR is critical for Staufen 2 isoform specific nucleocytoplasmic shuttling in neurons. J Neurochem 96:105–117

    PubMed  CrossRef  CAS  Google Scholar 

  • Ephrussi A, Dickinson LK, Lehmann R (1991) oskar organizes the germplasm and directs localization of the posterior determinant nanos. Cell 66:37–50

    PubMed  CrossRef  CAS  Google Scholar 

  • Ferrandon D, Elphick L, Nusslein-Volhard C, St. Johnston D (1994) Staufen protein associates with the 3′ UTR of bicoid mRNA to form particles that move in a microtubule-dependent manner. Cell 79:1221–1223

    PubMed  CrossRef  CAS  Google Scholar 

  • Ferrandon D, Koch I, Westhof E, Nusslein-Volhard C (1997) RNA-RNA interaction is required for the formation of specific bicoid mRNA 3′ UTR-STAUFEN ribonucleoprotein particles. EMBO J 16:1751–1758

    PubMed  CrossRef  CAS  Google Scholar 

  • Foster TM, Lough TJ, Emerson SJ, Lee RH, Bowman JL, Forster RLS, Lucas WJ (2002) A surveillance system regulates selective entry of RNA into the shoot apex. Plant Cell 14:1497–1508

    PubMed  CrossRef  CAS  Google Scholar 

  • Gu W, Deng Y, Zenklusen D, Singer RH (2004) A new yeast PUF family protein, Puf6p, represses ASH1 mRNA translation and is required for its localization. Genes Dev 18:1452–1465

    PubMed  CrossRef  CAS  Google Scholar 

  • Hake S, Smith HM, Holtan H, Magnani E, Mele G, Ramirez J (2004) The role of knox genes in plant development. Annu Rev Cell Dev Biol 20:125–151

    PubMed  CrossRef  CAS  Google Scholar 

  • Ham BK, Brandom JL, Xoconostle-Cazares B, Ringgold V, Lough TL, Lucas WJ (2009) A polypyrimidine tract binding protein, pumpkin RBP50, forms the basis of a phloem-mobile ribonucleoprotein complex. Plant Cell 21:197–215

    PubMed  CrossRef  CAS  Google Scholar 

  • Haywood V, Yu TS, Huang NC, Lucas WJ (2005) Phloem long-distance trafficking of GIBBERELLIC ACID-INSENSITIVE RNA regulates leaf development. Plant J 42:49–68

    PubMed  CrossRef  CAS  Google Scholar 

  • Huang NC, Yu TS (2009) The sequences of Arabidopsis GA-INSENSITIVE RNA constitute the motifs that are necessary and sufficient for RNA long-distance trafficking. Plant J 59:921–929

    PubMed  CrossRef  CAS  Google Scholar 

  • Huang T, Böhlenius H, Eriksson S, Parcy F, Nilsson O (2005) The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309:1694–1696

    PubMed  CrossRef  CAS  Google Scholar 

  • Hyun TK, Uddin MN, Rim Y, Kim JY (2011) Cell-to-cell trafficking of RNA and RNA silencing through plasmodesmata. Protoplasma 248:101–116

    PubMed  CrossRef  CAS  Google Scholar 

  • Kanehira A, Yamada K, Iwaya T, Tsuwamoto R, Kasai A, Nakazono M, Harada T (2010) Apple phloem cells contain some mRNAs transported over long distances. Tree Genet Genomes 5:635–642

    CrossRef  Google Scholar 

  • Kasai A, Bai S, Li T, Harada T (2011) Graft-transmitted siRNA signal from the root induces visual manifestation of endogenous post-transcriptional gene silencing in the scion. PLoS One 6:e16895

    PubMed  CrossRef  CAS  Google Scholar 

  • Kehr J, Buhtz A (2008) Long distance transport and movement of RNA through the phloem. J Exp Bot 59:85–92

    PubMed  CrossRef  CAS  Google Scholar 

  • Kim M, Canio W, Kessler S, Sinha N (2001) Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science 293:287–289

    PubMed  CrossRef  CAS  Google Scholar 

  • Kim JY, Yuan Z, Cilia M, Khalfan-Jagani Z, Jackson D (2002) Intercellular trafficking of a KNOTTED1 green fluorescent protein fusion in the leaf and shoot meristem of Arabidopsis. Proc Natl Acad Sci USA 99:4103–4108

    PubMed  CrossRef  CAS  Google Scholar 

  • Kim JY, Rim Y, Wang J, Jackson D (2005) A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking. Genes Dev 19:788–793

    PubMed  CrossRef  CAS  Google Scholar 

  • King ML, Messitt TJ, Mowry KL (2005) Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biol Cell 97:19–33

    PubMed  CrossRef  CAS  Google Scholar 

  • Koornneef M, Elgersma A, Hanhart CJ, van Loenen-Martinet EP, van Rign L, Zeevaart JAD (1985) A gibberellin insensitive mutant of Arabidopsis thaliana. Physiol Plant 65:33–39

    CrossRef  CAS  Google Scholar 

  • LeBlanc M, Kim G, Westwood JH (2012) RNA trafficking in parasitic plant systems. Front Plant Sci 3:203

    PubMed  CrossRef  Google Scholar 

  • Lewis RA, Kress TL, Cote CA, Gautreau D, Rokop ME, Mowry KL (2004) Conserved and clustered RNA recognition sequences are a critical feature of signals directing RNA localization in Xenopus oocytes. Mech Dev 121:101–109

    PubMed  CrossRef  CAS  Google Scholar 

  • Li C, Zhang K, Zeng X, Jackson S, Zhou Y, Hong Y (2009) A cis element within flowering locus T mRNA determines its mobility and facilitates trafficking of heterologous viral RNA. J Virol 83:3540–3548

    PubMed  CrossRef  CAS  Google Scholar 

  • Li C, Gu M, Shi N, Zhang H, Yang X, Osman T, Liu Y, Wang H, Vatish M, Jackson S, Hong Y (2011) Mobile FT mRNA contributes to the systemic florigen signalling in floral induction. Sci Rep 1:73

    PubMed  Google Scholar 

  • Lin MK, Belanger H, Lee YJ, Varkonyi-Gasic E, Taoka K, Miura E, Xoconostle-Cázares B, Gendler K, Jorgensen RA, Phinney B, Lough TJ, Lucas WJ (2007) FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 19:1488–1506

    PubMed  CrossRef  CAS  Google Scholar 

  • Lin MK, Lee YJ, Lough TJ, Phinney BS, Lucas WJ (2009) Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function. Mol Cell Proteomics 8:343–356

    PubMed  CAS  Google Scholar 

  • Lin T, Sharma P, Gonzalez DH, Viola IL, Hannapel DJ (2013) The impact of the long-distance transport of a BEL1-like mRNA on development. Plant Physiol 161:760–772

    PubMed  CrossRef  CAS  Google Scholar 

  • Lu KJ, Huang NC, Liu YS, Lu CA, Yu TS (2012) Long-distance movement of Arabidopsis FLOWERING LOCUS T RNA participates in systemic floral regulation. RNA Biol 9:653–662

    PubMed  CrossRef  CAS  Google Scholar 

  • Lucas WJ (2006) Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology 344:169–184

    PubMed  CrossRef  CAS  Google Scholar 

  • Lucas WJ, Bouché-Pillon S, Jackson DP, Nguyen L, Baker L, Ding B, Hake S (1995) Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270:1980–1983

    PubMed  CrossRef  CAS  Google Scholar 

  • Lucas WJ, Ham BK, Kim JY (2009) Plasmodesmata – bridging the gap between neighboring plant cells. Trends Cell Biol 19:495–503

    PubMed  CrossRef  CAS  Google Scholar 

  • Mahajan A, Bhogale S, Kang IH, Hannapel DJ, Banerjee AK (2012) The mRNA of a Knotted1-like transcription factor of potato is phloem mobile. Plant Mol Biol 79:595–608

    PubMed  CrossRef  CAS  Google Scholar 

  • Mahowald AP (2001) Assembly of the Drosophila germplasm. Int Rev Cytol 203:187–213

    PubMed  CrossRef  CAS  Google Scholar 

  • Mani J, Güttinger A, Schimanski B, Heller M, Acosta-Serrano A, Pescher P, Späth G, Roditi I (2011) Alba-domain proteins of Trypanosoma brucei are cytoplasmic RNA-binding proteins that interact with the translation machinery. PLoS One 6:e22463

    PubMed  CrossRef  CAS  Google Scholar 

  • Martin A, Adam H, Diaz-Mendoza M, Zurczak M, Gonzalez-Schain ND, Suarez-Lopez P (2009) Graft-transmissible induction of potato tuberization by the microRNA miR172. Development 136:2873–2881

    PubMed  CrossRef  CAS  Google Scholar 

  • Maynard CM, Hall KB (2010) Interactions between PTB RRMs induce slow motions and increase RNA binding affinity. J Mol Biol 397:260–277

    PubMed  CrossRef  CAS  Google Scholar 

  • Melnyk CW, Molnar A, Bassett A, Baulcombe DC (2011) Mobile 24 nt small RNAs direct transcriptional gene silencing in the root meristems of Arabidopsis thaliana. Curr Biol 21:1678–1683

    PubMed  CrossRef  CAS  Google Scholar 

  • Notaguchi M, Wolf S, Lucas WJ (2012) Phloem-mobile Aux/IAA transcripts target to the root tip and modify root architecture. J Integr Plant Biol 54:760–772

    PubMed  CrossRef  CAS  Google Scholar 

  • Oberstrass FC, Auweter SD, Erat M, Hargous Y, Henning A, Wenter P, Reymond L, Amir-Ahmady B, Pitsch S, Black DL, Allain FHT (2005) Structure of PTB bound to RNA: specific binding and implications for splicing regulation. Science 309:2054–2057

    PubMed  CrossRef  CAS  Google Scholar 

  • Omid A, Keilin T, Glass A, Leshkowitz D, Wolf S (2007) Characterization of phloem-sap transcription profile in melon plants. J Exp Bot 58:3645–3656

    PubMed  CrossRef  CAS  Google Scholar 

  • Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev 11:3194–3205

    PubMed  CrossRef  CAS  Google Scholar 

  • Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN (1999) The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J 18:111–119

    PubMed  CrossRef  CAS  Google Scholar 

  • Qi Y, Pelissier T, Itaya A, Hunt E, Wassenegger M, Ding B (2004) Direct role of a viroid RNA motif in mediating directional RNA trafficking across a specific cellular boundary. Plant Cell 16:1741–1752

    PubMed  CrossRef  CAS  Google Scholar 

  • Richards DE, King KE, Aitali T, Harberd NP (2001) How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Annu Rev Plant Physiol Plant Mol Biol 52:67–88

    PubMed  CrossRef  CAS  Google Scholar 

  • Roney JK, Khatibi PA, Westwood JH (2007) Cross-species translocation of mRNA from host plants into the parasitic plant dodder. Plant Physiol 143:1037–1043

    PubMed  CrossRef  CAS  Google Scholar 

  • Rosin FM, Hart JK, Horner HT, Davies PJ, Hannapel DJ (2003) Overexpression of a knotted-like homeobox gene of potato alters vegetative development by decreasing gibberellin accumulation. Plant Physiol 132:106–117

    PubMed  CrossRef  CAS  Google Scholar 

  • Ruiz-Medrano R, Xoconostle-Cazares B, Lucas WJ (1999) Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126:4405–4419

    PubMed  CAS  Google Scholar 

  • Schwach F, Vaistij FE, Jones L, Baulcombe DC (2005) An RNA-dependent RNA polymerase prevents meristem invasion by potato virus X and is required for the activity but not the production of a systemic silencing signal. Plant Physiol 138:1842–1852

    PubMed  CrossRef  CAS  Google Scholar 

  • St. Johnston D, Beuchle D, Nusslein-Volhard C (1991) Staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell 66:51–63

    PubMed  CrossRef  CAS  Google Scholar 

  • Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036

    PubMed  CrossRef  CAS  Google Scholar 

  • Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 59:573–594

    PubMed  CrossRef  CAS  Google Scholar 

  • Xu H, Zhang W, Li M, Harada T, Han Z, Li T (2010) Gibberellic acid insensitive mRNA transport in both directions between stock and scion in Malus. Tree Genet Genomes 6:1013–1019

    CrossRef  Google Scholar 

  • Yang HW, Yu TS (2010) Arabidopsis floral regulators FVE and AGL24 are phloem-mobile RNAs. Bot Stud 51:17–26

    CAS  Google Scholar 

  • Yu YY, Lashbrook CC, Hannapel DJ (2007) Tissue integrity and RNA quality of laser microdissected phloem of potato. Planta 226:797–803

    PubMed  CrossRef  CAS  Google Scholar 

  • Zhong X, Tao X, Stombaugh J, Leontis N, Ding B (2007) Tertiary structure and function of an RNA motif required for plant vascular entry to initiate systemic trafficking. EMBO J 26:3836–3846

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Anjan Banerjee, Yiguo Hong, and Tien-Shin Yu for allowing use of their data for this book chapter. Thanks also to Anjan Banerjee, Mithu Chatterjee, Ameya Mahajan, and Xin Meng for their dedicated contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Hannapel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hannapel, D.J. (2013). Long-Distance Signaling via Mobile RNAs. In: Baluška, F. (eds) Long-Distance Systemic Signaling and Communication in Plants. Signaling and Communication in Plants, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36470-9_3

Download citation