Skip to main content

Salicylic Acid-Induced Local and Long-Distance Signaling Models in Plants

Part of the Signaling and Communication in Plants book series (SIGCOMM,volume 19)

Abstract

Salicylic acid (SA) is one of the key hormonal factors determining the fate of plants exposed to stressful conditions, which is naturally found in plants and shown to be involved in the plant defense-related actions against infection by various pathogens. Recently, intracellular SA receptors were finally identified after a long survey of SA-binding proteins. In this chapter, the modes of both the short- and long-distance signaling events involving the actions of SA, a defense-related key signaling molecule, are compared by covering both the biochemical and electrophysiological views. Here, two distinct models for local SA perception and signaling mechanisms involved in the extracellular and intracellular paths (referred to as models i and ii), and the three different models for long-distance signaling mediated by SA are reviewed (referred to as models iii–v). The local SA signaling events can be attributed to (i) the extracellular SA perception model in which reactions between SA and apoplastic proteins result in acute oxidative burst followed by internalization of the derived signals via activation of calcium channels, and/or (ii) intracellular SA perception mechanism by which the action and life cycle of NPR1 protein are determined depending on the concentration of SA in both the infected cells and neighboring cells. On the other hand, the long-distance SA action could be attributed to three different modes, namely, (iii) local increase in SA followed by phloem transport of SA, (iv) systemic propagation of SA-derived mobile signals with both electrical and chemical natures without direct movement of SA, and (v) synergistic propagation of both SA and derived signals through the tissues and phloem. We view here that the long-distance SA signaling events (models iii–v) inevitably involve the mechanisms described in the local signaling models (models i and ii) as the key pieces of the puzzle.

Keywords

  • Long-distance signaling
  • Phloem-mobile signal
  • Salicylic acid
  • Signal transduction

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-36470-9_2
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-36470-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

References

  • Alvarez ME, Pennell RI, Meijer P-J, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773–784

    PubMed  CAS  CrossRef  Google Scholar 

  • Antoniw JF, White RF (1980) The effects of aspirin and polyacrylic acid on soluble leaf proteins and resistance to virus infection in five cultivars of tobacco. Phytopathol Z 98:331–341

    CAS  CrossRef  Google Scholar 

  • Aoki K, Suzui N, Fujimaki S, Dohmae N, Yonekura-Sakakibara K, Fujiwara T, Hayashi H, Yamaya T, Sakakibara H (2005) Destination-selective long-distance movement of phloem proteins. Plant Cell 17:1801–1814

    PubMed  CAS  CrossRef  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    PubMed  CAS  CrossRef  Google Scholar 

  • Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28:949–964

    CAS  CrossRef  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3544

    PubMed  CAS  CrossRef  Google Scholar 

  • Baker A, Graham IA, Holdsworth M, Smith SM, Theodouloue FL (2006) Chewing the fat: β-oxidation in signalling and development. Trends Plant Sci 11:124–132

    PubMed  CAS  CrossRef  Google Scholar 

  • Barbehenn R, Dukatz C, Holt C, Reese A, Martiskainen O, Salminen J-P, Yip L, Tran L, Constabel CP (2010) Feeding on poplar leaves by caterpillars potentiates foliar peroxidase action in their guts and increases plant resistance. Oecologia 164:993–1004

    PubMed  CrossRef  Google Scholar 

  • Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C, Minibayeva F (2002) The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J Exp Bot 53:1367–1376

    PubMed  CAS  CrossRef  Google Scholar 

  • Botting D (1973) Humboldt and the cosmos. Sphere Books, London

    Google Scholar 

  • Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouan A, Hao X, Tang J, Rietdorf K, Teboul L, Chuang K-T, Lin P, Xiao R, Wang C, Zhu Y, Lin Y, Wyatt CN, Parrington J, Ma J, Evans AM, Galione A, Zhu MX (2009) NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459:596–600

    PubMed  CAS  CrossRef  Google Scholar 

  • Chanda B, Xia Y, Mandal MK, Yu K, Sekine K-T, Gao Q-M, Selote D, Hu Y, Stromberg A, Navarre D, Kachroo A, Kachroo P (2011) Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nat Genet 43:421–427

    PubMed  CAS  CrossRef  Google Scholar 

  • Chaturvedi R, Krothapalli K, Makandar R, Nandi A, Sparks AA, Roth MR, Welti R, Shah J (2008) Plastid ω3-fatty acid desaturase-dependent accumulation of a systemic acquired resistance inducing activity in petiole exudates of Arabidopsis thaliana is independent of jasmonic acid. Plant J 54:106–117

    PubMed  CAS  CrossRef  Google Scholar 

  • Chaturvedi R, Venables B, Petros RA, Nalam V, Li M, Wang X, Takemoto LJ, Shah J (2012) An abietane diterpenoid is a potent activator of systemic acquired resistance. Plant J 71:161–172

    PubMed  CAS  CrossRef  Google Scholar 

  • Chen H-J, Kuc J (1999) Ca2+-dependent excretion of salicylic acid in tobacco cell suspension culture. Bot Bull Acad Sin 40:267–273

    CAS  Google Scholar 

  • Chen Z, Silva H, Klessig DF (1993a) Active oxygen species in the induction of plant systemic acquired resistance induced by salicylic acid. Science 262:1883–1886

    PubMed  CAS  CrossRef  Google Scholar 

  • Chen Z, Ricigliano JR, Klessig DF (1993b) Purification and characterization of soluble salicylic acid binding protein from tobacco. Proc Natl Acad Sci USA 90:9533–9537

    PubMed  CAS  CrossRef  Google Scholar 

  • Chen H-J, Hou W-C, Kuc J, Lin Y-H (2001) Ca2+-dependent and Ca2+-independent excretion modes of salicylic acid in tobacco cell suspension culture. J Exp Bot 52:1219–1226

    PubMed  CAS  CrossRef  Google Scholar 

  • Chen H-J, Hou W-C, Kuc J, Lin Y-H (2002) Salicylic acid mediates alternative signal transduction pathways for pathogenesis-related acidic β-1,3-glucanase (protein N) induction in tobacco cell suspension culture. J Plant Physiol 159:331–337

    CAS  CrossRef  Google Scholar 

  • Clarke A, Mur LAJ, Darby RM, Kenton P (2005) Harpin modulates the accumulation of salicylic acid by Arabidopsis cells via apoplastic alkalization. J Exp Bot 56:3129–3136

    PubMed  CAS  CrossRef  Google Scholar 

  • Clayton H, Knight MR, Knight H, McAinsh MR, Hetherington AM (1999) Dissection of the ozone-induced calcium signature. Plant J 17:575–579

    PubMed  CAS  CrossRef  Google Scholar 

  • Coll NS, Epple P, Dangl JL (2011) Programmed cell death in the plant immune system. Cell Death Differ 18:1247–1256

    PubMed  CAS  CrossRef  Google Scholar 

  • Conrath U, Chen Z, Ricigliano JR, Klessig DF (1995) Two inducers of plant defense response, 2,6-dichloroisonicotinic acid and salicylic acid, inhibit catalase activities in tobacco. Proc Natl Acad Sci USA 92:7143–7147

    PubMed  CAS  CrossRef  Google Scholar 

  • Dadacz-Narloch B, Beyhl D, Larisch C, López-Sanjurjo EJ, Reski R, Kuchitsu K, Müller TD, Becker D, Schönknecht G, Hedrich R (2011) A novel calcium binding site in the slow vacuolar cation channel TPC1 senses luminal calcium levels. Plant Cell 23:2696–2707

    PubMed  CAS  CrossRef  Google Scholar 

  • De Pinto MC, Locato V, de Gara L (2012) Redox regulation in plant programmed cell death. Plant Cell Environ 35:234–244

    PubMed  CrossRef  CAS  Google Scholar 

  • Del Río LA, Corpas FJ, Sandalio LM, Palma JM, Gómez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272

    PubMed  CrossRef  Google Scholar 

  • Delaney TP (2004) Salicylic acid. In: Davies PJ (ed) Plant hormones. Biosynthesis, signal transduction, action. Kluwer Academic, Dordrecht, pp 635–653

    Google Scholar 

  • Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9:e0156

    PubMed  Google Scholar 

  • Doke N (1983a) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol Plant Pathol 23:345–357

    CAS  CrossRef  Google Scholar 

  • Doke N (1983b) Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiol Plant Pathol 23:359–367

    CAS  CrossRef  Google Scholar 

  • Doke N (1985) NADPH-dependent O2 - generation in membrane fractions isolated from wounded potato tubers inoculated with Phytophthora infestans. Physiol Plant Pathol 27:311–322

    CAS  CrossRef  Google Scholar 

  • Drzewiecka K, Borowiak K, Bandurska H, Golinski P (2012) Salicylic acid – a potential biomarker of tobacco Bel-W3 cell death developed as a response to ground level ozone under ambient conditions. Acta Biol Hung 63:231–249

    PubMed  CAS  CrossRef  Google Scholar 

  • Du H, Klessig DF (1997) Identification of a soluble, high-affinity salicylic acid-binding protein in tobacco. Plant Physiol 113:1319–1327

    PubMed  CAS  Google Scholar 

  • Durner J, Klessig DF (1995) Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. Proc Natl Acad Sci USA 92:11312–11316

    PubMed  CAS  CrossRef  Google Scholar 

  • Durner J, Klessig DF (1996) Salicylic acid is a modulator of tobacco and mammalian catalases. J Biol Chem 272:28492–28501

    Google Scholar 

  • Emoto A, Ushigome F, Koyabu N, Kajiya H, Okabe K, Satoh S, Tsukimori K, Nakano H, Ohtani H, Sawada Y (2002) H+-linked transport of salicylic acid, an NSAID, in the human trophoplast cell line BeWo. Am J Physiol 282:C1064–C1075

    CAS  CrossRef  Google Scholar 

  • Evans NH, McAinsh MR, Hetherington AM, Knight MR (2005) ROS perception in Arabidopsis thaliana: the ozone-induced calcium response. Plant J 41:615–626

    PubMed  CAS  CrossRef  Google Scholar 

  • Fiscus EL, Booker FL, Burkey KO (2005) Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ 28:997–1011

    CAS  CrossRef  Google Scholar 

  • Forouhar F, Yang Y, Kumar D, Chen Y, Fridman E, Park SW, Chiang Y, Acton TB, Montelione GT, Pichersky E, Klessig DF, Tong L (2005) Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proc Natl Acad Sci USA 102:1773–1778

    PubMed  CAS  CrossRef  Google Scholar 

  • Fu ZQ, Yan Y, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong X (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228–232

    PubMed  CAS  Google Scholar 

  • Furuichi T, Kawano T (2006) Biochemistry and cell biology of calcium channels and signaling involved in plant growth and environmental responses. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology, vol III. Global Science Books, London, pp 26–36

    Google Scholar 

  • Furuichi T, Cunningham KW, Muto S (2001a) A putative two pore channel AtTPC1 mediates Ca2+ flux in Arabidopsis leaf cells. Plant Cell Physiol 42:900–905

    PubMed  CAS  CrossRef  Google Scholar 

  • Furuichi T, Mori IC, Takahashi K, Muto S (2001b) Sugar-induced increase in cytosolic Ca2+ in Arabidopsis thaliana whole plants. Plant Cell Physiol 42:1149–1155

    PubMed  CAS  CrossRef  Google Scholar 

  • Furuichi T, Kawano T, Tatsumi H, Sokabe M (2007) Roles of ion channels in environmental responses of plants. In: Martinac B (ed) Sensing with ion channels. Springer series in biophysics, vol 11. Springer, Berlin, pp 47–62

    Google Scholar 

  • Galvani L (1791) De viribus electricitatis in motu musculari commentarius. Bon Sci Art Inst Acad Comm 7:363–418

    Google Scholar 

  • Gaupels F, Kuruthukulangarakoola GT, Durner J (2011) Upstream and downstream signals of nitric oxide in pathogen defence. Curr Opin Plant Biol 14:707–714

    PubMed  CAS  CrossRef  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28:1091–1101

    PubMed  CAS  CrossRef  Google Scholar 

  • Glauser G, Grata E, Dubugnon L, Rudaz S, Farmer EE, Wolfender JL (2008) Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. J Biol Chem 283:16400–16407

    PubMed  CAS  CrossRef  Google Scholar 

  • Gozzo F (2003) Systemic acquired resistance in crop protection: from nature to a chemical approach. J Agric Food Chem 51:4487–4503

    PubMed  CAS  CrossRef  Google Scholar 

  • Hamada H, Kurusu T, Okuma E, Nokajima H, Kiyoduka M, Koyano T, Sugiyama Y, Okada K, Koga J, Saji H, Miyao A, Hirochika H, Yamane H, Murata Y, Kuchitsu K (2012) Regulation of a proteinaceous elicitor-induced Ca2+ influx and production of phytoalexins by a putative voltage-gated cation channel, OsTPC1, in cultured rice cells. J Biol Chem 287:9931–9939

    PubMed  CAS  CrossRef  Google Scholar 

  • Hashimoto K, Saito M, Iida H, Matsuoka H (2005) Evidence for the plasma membrane localization of a putative voltage-dependent Ca2+ channel, OsTPC1, in rice. Plant Biotechnol 22:235–923

    CAS  CrossRef  Google Scholar 

  • Hause B, Hause G, Kutter C, Miersch O, Wasternack C (2003) Enzymes of jasmonate biosynthesis occur in tomato sieve elements. Plant Cell Physiol 44:643–648

    PubMed  CAS  CrossRef  Google Scholar 

  • Hedrich R, Marten I (2011) TPC1-SV channels gain shape. Mol Plant 4:428–441

    PubMed  CAS  CrossRef  Google Scholar 

  • Ikeda K, Yamasaki K, Homemoto M, Yamaue S, Ogawa M, Nakao E, Fukunaga Y, Nakanishi T, Utoguchi N, Myotoku M, Hirotani Y (2012) Efflux transporter mRNA expression profiles in differentiating JEG-3 human choriocarcinoma cells as a placental transport model. Pharmazie 67:86–90

    PubMed  CAS  Google Scholar 

  • Ishibashi K, Suzuki M, Imai M (2000) Molecular cloning of a novel form (two-repeat) protein related to voltage-gated sodium and calcium channels. Biochem Biophys Res Commun 270:370–376

    PubMed  CAS  CrossRef  Google Scholar 

  • Islam MM, Munemasa S, Hossain MA, Nakamura Y, Mori IC, Murata Y (2010) Roles of AtTPC1, vacuolar two pore channel 1, in Arabidopsis stomatal closure. Plant Cell Physiol 51:302–311

    PubMed  CAS  CrossRef  Google Scholar 

  • Jammes F, Hu HC, Villiers F, Bouten R, Kwak JM (2011) Calcium-permeable channels in plant cells. FEBS J 278:4262–4276

    PubMed  CAS  CrossRef  Google Scholar 

  • Jorgensen RA, Atkinson RG, Foster RL, Lucas WJ (1998) An RNA-based information superhighway in plants. Science 279:1486–1487

    PubMed  CAS  CrossRef  Google Scholar 

  • Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT (2009) Priming in systemic plant immunity. Science 324:89–91

    PubMed  CrossRef  CAS  Google Scholar 

  • Kadono T, Yamaguchi Y, Furuichi T, Hirono M, Garrec JP, Kawano T (2006) Ozone-induced cell death mediated with oxidative and calcium signaling pathways in tobacco Bel-W3 and Bel-B cell suspension cultures. Plant Signal Behav 1:312–322

    PubMed  CrossRef  Google Scholar 

  • Kadono T, Tran D, Errakhi R, Hiramatsu T, Meimoun P, Briand J, Iwaya-Inoue M, Kawano T, Bouteau F (2010) Increased anion channel activity is an unavoidable event in ozone-induced programmed cell death. PLoS One 5:e13373

    PubMed  CrossRef  CAS  Google Scholar 

  • Kadota Y, Furuichi T, Ogasawara Y, Goh T, Higashi K, Muto S, Kuchitsu K (2004) Identification of putative voltage dependent Ca2+ permeable channels involved in cryptogein-induced Ca2+ transients and defense responses in tobacco BY-2 Cells. Biochem Biophys Res Commun 317:823–830

    PubMed  CAS  CrossRef  Google Scholar 

  • Kangasjärvi J, Talvinen J, Utriainen M, Karjalainen R (1994) Plant defence systems induced by ozone. Plant Cell Environ 17:783–794

    CrossRef  Google Scholar 

  • Kangasjärvi J, Jaspars P, Kollist H (2005) Signaling and cell death in ozone-exposed plants. Plant Cell Environ 28:1–16

    CrossRef  Google Scholar 

  • Kangasjärvi S, Neukermans J, Li S, Aro E-M, Noctor G (2012) Photosynthesis, photorespiration, and light signalling in defence responses. J Exp Bot 63:1619–1636

    PubMed  CrossRef  CAS  Google Scholar 

  • Kawano T (2003) Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep 21:829–837

    PubMed  CAS  Google Scholar 

  • Kawano T, Furuichi T (2007) Salicylic acid as a defense-related plant hormone: roles of oxidative and calcium signaling paths in salicylic acid biology. In: Hayat S, Ahmad A (eds) Salicylic acid – a plant hormone. Springer, Dordrecht, pp 277–321

    CrossRef  Google Scholar 

  • Kawano T, Muto S (2000) Mechanism of peroxidase actions for salicylic acid-induced generation of active oxygen species and an increase in cytosolic calcium in tobacco suspension culture. J Exp Bot 51:685–693

    PubMed  CAS  CrossRef  Google Scholar 

  • Kawano T, Sahashi N, Takahashi K, Uozumi N, Muto S (1998) Salicylic acid induces extracellular generation of superoxide followed by an increase in cytosolic calcium ion in tobacco suspension culture: the earliest events in salicylic acid signal transduction. Plant Cell Physiol 39:721–730

    CAS  CrossRef  Google Scholar 

  • Kawano T, Kawano N, Muto S, Lapeyrie F (2001) Cation-induced superoxide generation in tobacco cell suspension culture is dependent on ion valence. Plant Cell Environ 24:1235–1241

    CAS  CrossRef  Google Scholar 

  • Kawano T, Kadono T, Furuichi T, Muto S, Lapeyrie F (2003) Aluminum-induced distortion in calcium signaling involving oxidative bursts and channel regulations in tobacco BY-2 cells. Biochem Biophys Res Commun 308:35–42

    PubMed  CAS  CrossRef  Google Scholar 

  • Kawano T, Furuichi T, Muto S (2004a) Controlled free salicylic acid levels and corresponding signaling mechanisms in plants. Plant Biotechnol 21:319–335

    CAS  CrossRef  Google Scholar 

  • Kawano T, Kadono T, Fumoto K, Lapeyrie F, Kuse M, Isobe M, Furuichi T, Muto S (2004b) Aluminum as a specific inhibitor of plant TPC1 Ca2+ channels. Biochem Biophys Res Commun 324:40–45

    PubMed  CAS  CrossRef  Google Scholar 

  • Kawano T, Tanaka S, Kadono T, Muto S (2004b) Salicylic acid glucoside acts as a slow inducer of oxidative burst in tobacco suspension culture. Z Naturforsch 59c:684–692

    Google Scholar 

  • Kerchev PI, Fenton B, Foyer CH, Hancock RD (2012) Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. Plant Cell Environ 35:441–453

    PubMed  CAS  CrossRef  Google Scholar 

  • Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756

    PubMed  CrossRef  Google Scholar 

  • Khokon MAR, Okuma E, Hossain MA, Munemasa S, Uraji M, Nakamura Y, Mori IC, Murata Y (2011) Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ 34:434–443

    PubMed  CAS  CrossRef  Google Scholar 

  • Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352:524–526

    PubMed  CAS  CrossRef  Google Scholar 

  • Koo AJK, Gao X, Jones AD, Howe GA (2009) A rapid wound signal activates systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J 59:974–986

    PubMed  CAS  CrossRef  Google Scholar 

  • Kotchoni SO, Gachomo EW (2006) The reactive oxygen species network pathways: an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants. J Biosci 31:389–404

    PubMed  CAS  CrossRef  Google Scholar 

  • Kumar D, Klessig DF (2003) High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proc Natl Acad Sci USA 100:16101–16106

    PubMed  CAS  CrossRef  Google Scholar 

  • Kunihiro S, Hiramatsu T, Kawano T (2011) Involvement of salicylic acid signal transduction in aluminum-responsive oxidative burst in Arabidopsis thaliana cell suspension culture. Plant Signal Behav 6:611–616

    PubMed  CAS  CrossRef  Google Scholar 

  • Kurusu T, Sakurai Y, Miyao A, Hirochika H, Kuchitsu K (2004) Identification of a putative voltage-gated Ca2+-permeable channel (OsTPC1) involved in Ca2+ influx and regulation of growth and development in rice. Plant Cell Physiol 45:693–702

    PubMed  CAS  CrossRef  Google Scholar 

  • Kurusu T, Yagala T, Miyao A, Hirochika H, Kuchitsu K (2005) Identification of a putative voltage-gated Ca2+ channel as a key regulator of elicitor-induced hypersensitive cell death and mitogen-activated protein kinase activation in rice. Plant J 42:798–809

    PubMed  CAS  CrossRef  Google Scholar 

  • Kvaratskhelia M, George SJ, Thorneley RNF (1997) Salicylic acid is a reducing substrate and not an effective inhibitor of ascorbate peroxidase. J Biol Chem 272:20998–21001

    PubMed  CAS  CrossRef  Google Scholar 

  • Lee J-S (1998) The mechanism of stomatal closing by salicylic acid in Commelina communis L. J Plant Biol 41:97–102

    CrossRef  Google Scholar 

  • Lee HJ, Kim JS, Yoo SJ, Kang YY, Han SH, Yang K-Y, Kim YC, Gardener BM, Kang H (2012) Different roles of glycine-rich RNA-binding protein7 in plant defense against Pectobacterium carotovorum, Botrytis cinerea, and tobacco mosaic viruses. Plant Physiol Biochem 60:46–52

    PubMed  CAS  CrossRef  Google Scholar 

  • Leitner M, Vandelle E, Gaupels F, Bellin D, Delledonne M (2009) NO signals in the haze: nitric oxide signalling in plant defence. Curr Opin Plant Biol 12:451–458

    PubMed  CAS  CrossRef  Google Scholar 

  • Li L, Li C, Lee GI, Howe GA (2002) Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc Natl Acad Sci USA 99:6416–6421

    PubMed  CAS  CrossRef  Google Scholar 

  • Li P, Ham B-K, Lucas WJ (2011) CmRBP50 protein phosphorylation is essential for assembly of a stable phloem-mobile high-affinity ribonucleoprotein complex. J Biol Chem 286:23142–23149

    PubMed  CAS  CrossRef  Google Scholar 

  • Lin C, Yu Y, Kadono T, Iwata M, Umemura K, Furuichi T, Kuse M, Isobe M, Yamamoto Y, Mastumoto H, Yoshizuka K, Kawano T (2005) Action of aluminum, novel TPC1-type channel inhibitor, against salicylate-induced and cold shock-induced calcium influx in tobacco BY-2 cells. Biochem Biophys Res Commun 332:823–830

    PubMed  CAS  CrossRef  Google Scholar 

  • Liu N, You J, Shi W, Liu W, Yang Z (2012) Salicylic acid involved in the process of aluminum induced citrate exudation in Glycine max L. Plant Soil 352:85–97

    CAS  CrossRef  Google Scholar 

  • Lucas WJ, Yoo BC, Kragler F (2001) RNA as a long-distance information macromolecule in plants. Nat Rev Mol Cell Biol 2:849–857

    PubMed  CAS  CrossRef  Google Scholar 

  • Malamy J, Carr JP, Klessig DF, Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002–1004

    PubMed  CAS  CrossRef  Google Scholar 

  • Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399–403

    PubMed  CAS  CrossRef  Google Scholar 

  • Manthe B, Schulz M, Schnable H (1992) Effects of salicylic acid on growth and stomatal movement on Vicia faba L.: evidence for salicylic acid metabolism. J Chem Ecol 18:1525–1539

    CAS  CrossRef  Google Scholar 

  • McGurl B, Pearce G, Orozco-Cardenas M, Ryan CA (1992) Structure, expression, and antisense inhibition of the systemin precursor gene. Science 255:1570–1573

    PubMed  CAS  CrossRef  Google Scholar 

  • Meimoun P, Vidal G, Bohrer AS, Lehner A, Tran D, Briand J, Bouteau F, Rona JP (2009) Intracellular Ca2+ stores could participate to abscisic acid-induced depolarization and stomatal closure in Arabidopsis thaliana. Plant Signal Behav 4:830–835

    PubMed  CAS  CrossRef  Google Scholar 

  • Métraux J-P, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, Raschdorf K, Schmid E, Blum W, Inverardi B (1990) Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250:1004–1006

    PubMed  CrossRef  Google Scholar 

  • Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2:ra45

    Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    PubMed  CAS  CrossRef  Google Scholar 

  • Mitton FM, Pinedo ML, de la Canal L (2009) Phloem sap of tomato plants contains a DIR1 putative ortholog. J Plant Physiol 166:543–547

    PubMed  CAS  CrossRef  Google Scholar 

  • Miyake C, Sano S, Asada K (1996) A new assay of ascorbate peroxidase using the coupled system with monodehydroascorbate radical reductase. In: Obinger C, Burner U, Ebermann R, Penel C, Greppin (eds) Plant peroxidases: biochemistry and physiology. University of Geneva, Vienna, pp 386–389

    Google Scholar 

  • Mölders W, Buchala A, Métraux J-P (1996) Transport of salicylic acid in tobacco necrosis virus-infected cucumber plants. Plant Physiol 112:787–792

    PubMed  Google Scholar 

  • Møller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    PubMed  CrossRef  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    PubMed  CrossRef  CAS  Google Scholar 

  • Moreau M, Tian M, Klessig DF (2012) Salicylic acid binds NPR3 and NPR4 to regulate NPR1-dependent defense responses. Cell Res 2012:1–3

    Google Scholar 

  • Mori IC, Schroeder JI (2004) Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol 135:702–708

    PubMed  CAS  CrossRef  Google Scholar 

  • Mori IC, Pinontoan R, Kawano T, Muto S (2001) Involvement of superoxide generation in salicylic acid-induced stomatal closure in Vicia faba. Plant Cell Physiol 42:1383–1388

    PubMed  CAS  CrossRef  Google Scholar 

  • Mou Z, Fan WH, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    PubMed  CAS  CrossRef  Google Scholar 

  • Nandi A, Welti R, Shah J (2004) The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESSOR OF FATTY ACID DESATURASE DEFICIENCY1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. Plant Cell 16:465–477

    PubMed  CAS  CrossRef  Google Scholar 

  • Niederl S, Kirsch T, Riederer M, Schreiber L (1998) Co-permeability of 3H-labeled water and 14C-labeled organic acids across isolated plant cuticles. Plant Physiol 116:117–123

    CAS  CrossRef  Google Scholar 

  • Noctor G, De Paepe R, Foyer CH (2007) Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci 12:125–134

    PubMed  CAS  CrossRef  Google Scholar 

  • Nomura H, Komori T, Uemura S, Kanda Y, Shimotani K, Nakai K, Furuichi T, Takebayashi K, Sugimoto T, Sano S, Suwastika IN, Fukusaki E, Yoshioka H, Nakahira Y, Shiina T (2012) Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nat Commun 3:926

    PubMed  CrossRef  CAS  Google Scholar 

  • Ohashi Y, Murakami T, Mitsuhara I, Seo S (2004) Rapid down and upward translocation of salicylic acid in tobacco plants. Plant Biotechnol 21:95–101

    CAS  CrossRef  Google Scholar 

  • Overmyer K, Brosche M, Pellinen R, Kuittinen T, Tuominen H, Ahlfors R, Keinaenen M, Saarma M, Scheel D, Kangasjaervi J (2005) Ozone-induced programmed cell death in the Arabidopsis radical-induced cell death 1 mutant. Plant Physiol 137:1092–1104

    PubMed  CAS  CrossRef  Google Scholar 

  • Park S-W, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116

    PubMed  CAS  CrossRef  Google Scholar 

  • Pasqualini S, Piccioni C, Reale L, Ederli L, Torre GD, Ferranti F (2003) Ozone-induced cell death in tobacco cultivar Bel W3 plants. The role of programmed cell death in lesion formation. Plant Physiol 133:1122–1134

    PubMed  CAS  CrossRef  Google Scholar 

  • Pastora V, Vicentb C, Cerezoa M, Mauch-Manic B, Deand J, Flors V (2012) Detection, characterization and quantification of salicylic acid conjugates in plant extracts by ESI tandem mass spectrometric techniques. Plant Physiol Biochem 53:19–26

    CrossRef  CAS  Google Scholar 

  • Peiter E, Maathuis FJ, Mills LN, Knight H, Pelloux J, Hetherington AM, Sanders D (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434:404–408

    PubMed  CAS  CrossRef  Google Scholar 

  • Pell EJ, Schlagnhaufer CD, Arteca RN (1997) Ozone-induced oxidative stress: mechanisms of action and reaction. Physiol Plant 100:264–273

    CAS  CrossRef  Google Scholar 

  • Qi Y, Tsuda K, Joe A, Sato M, Nguyen LV, Glazebrook J, Alfano IR, Cohen JD, Katagiri F (2010) A putative RNA-binding protein positively regulates salicylic acid-mediated immunity in Arabidopsis. Mol Plant-Microbe Interact 23:1573–1583

    PubMed  CAS  CrossRef  Google Scholar 

  • Rainsford DK (1984) Aspirin and salicylates. Butterworth, London

    Google Scholar 

  • Ranf S, Wünnenberg P, Lee J, Becker D, Dunkel M, Hedrich R, Scheel D, Dietrich P (2008) Loss of the vacuolar cation channel, AtTPC1, does not impair Ca2+ signals induced by abiotic and biotic stresses. Plant J 53:287–299

    PubMed  CAS  CrossRef  Google Scholar 

  • Rasmussen JB, Hammerschmidt R, Zook MN (1991) Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv. syringae. Plant Physiol 97:1342–1347

    PubMed  CAS  CrossRef  Google Scholar 

  • Raz V, Fluhr R (1992) Calcium requirement for ethylene-dependent responses. Plant Cell 4:1123–1130

    PubMed  CAS  Google Scholar 

  • Rhodes JD, Thain JF, Wildon DC (1996) The pathway for systemic electrical signal conduction in the wounded tomato plant. Planta 200:50–57

    CAS  CrossRef  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343

    PubMed  CAS  CrossRef  Google Scholar 

  • Rocher F, Chollet J-F, Jousse C, Bonnemain J-L (2006) Salicylic acid, an ambimobile molecule exhibiting a high ability to accumulate in the phloem. Plant Physiol 141:1684–1693

    PubMed  CAS  CrossRef  Google Scholar 

  • Rocher F, Chollet J-F, Legros S, Jousse C, Lemoine R, Faucher M, Bush DR, Bonnemain J-L (2009) Salicylic acid transport in Ricinus communis involves a pH-dependent carrier system in addition to diffusion. Plant Physiol 150:2081–2091

    PubMed  CAS  CrossRef  Google Scholar 

  • Ruiz-Medrano R, Kragler F, Wolf S (2012) Signaling and phloem-mobile transcripts, In: Kragler F, Hülskamp M (eds) Short and long distance signaling. Advances in plant biology, vol 3. Springer, Berlin, pp 151–177

    Google Scholar 

  • Ruiz-Sanchez E, O’Donnell MJ (2006) Characterization of salicylate uptake across the basolateral membrane of the Malpighian tubules of Drosophila melanogaster. J Insect Physiol 52:920–928

    PubMed  CAS  CrossRef  Google Scholar 

  • Rustérucci C, Espunya MC, Díaz M, Chabannes M, Martínez MC (2007) S-nitrosoglutathione reductase affords protection against pathogens in Arabidopsis, both locally and systemically. Plant Physiol 143:1282–1292

    PubMed  CrossRef  CAS  Google Scholar 

  • Sandermann H, Ernst D, Heller W, Langebertles C (1998) Ozone: an abiotic elicitor of plant defense reaction. Trend Plant Sci 3:47–50

    CrossRef  Google Scholar 

  • Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. Plant Cell 11:691–706

    PubMed  CAS  Google Scholar 

  • Schneider-Müller S, Kurosaki F, Nishi A (1994) Role of salicylic acid and intracellular Ca2+ in the induction of chitinase activity in carrot suspension culture. Physiol Mol Plant Pathol 45:101–109

    CrossRef  Google Scholar 

  • Schraudner M, Moeder W, Wiese C, Van Camp W, Inze D, Langebartels C, Sandermann H (1998) Ozone-induced oxidative burst in the ozone biomonitor plant, tobacco Bel W3. Plant J 16:235–245

    PubMed  CAS  CrossRef  Google Scholar 

  • Seo S, Ichizawa K, Ohashi Y (1995) Induction of salicylic acid-β-glucosidase in tobacco leaves by exogenous salicylic acid. Plant Cell Physiol 36:447–453

    CAS  Google Scholar 

  • Shah J (2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol 6:365–371

    PubMed  CAS  CrossRef  Google Scholar 

  • Shulaev V, Leon J, Raskin I (1995) Is salicylic acid a translocated signal of systemic acquired resistance in tobacco? Plant Cell 7:1691–1701

    PubMed  CAS  Google Scholar 

  • Slaymaker DH, Navarre DA, Clark D, Del Pozo O, Martin GB, Klessig DF (2002) The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci USA 99:11640–11645

    PubMed  CAS  CrossRef  Google Scholar 

  • Song F, Goodman RM (2001) Activity of nitric oxide is dependent on, but is partially required for function of, salicylic acid in the signaling pathway in tobacco systemic acquired resistance. Mol Plant-Microbe Interact 14:1458–1462

    PubMed  CAS  CrossRef  Google Scholar 

  • Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux JP, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CM (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770

    PubMed  CAS  CrossRef  Google Scholar 

  • Ströher E, Dietz KJ (2006) Concepts and approaches towards understanding the cellular redox proteome. Plant Biol 8:407–418

    PubMed  CrossRef  CAS  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres A, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signalling. Curr Opin Plant Biol 14:691–699

    PubMed  CAS  CrossRef  Google Scholar 

  • Swanson SJ, Choi W-G, Chanoca A, Gilroy S (2011) In vivo imaging of Ca2+, pH, and reactive oxygen species using fluorescent probes in plants. Annu Rev Plant Biol 62:273–297

    PubMed  CAS  CrossRef  Google Scholar 

  • Tenhaken R, Rübel C (1997) Salicylic acid is needed in hypersensitive cell death in soybean but does not act as a catalase inhibitor. Plant Physiol 115:291–298

    PubMed  CAS  Google Scholar 

  • Thompson GA, van Bel AJE, Gaupels F, Vlot AC (2012) Plant defense and long-distance signaling in the phloem. In: Thompson GA, van Bel AJE (eds) Phloem. Molecular cell biology, systemic communication, biotic interactions. Wiley-Blackwell, Oxford, pp 227–248

    Google Scholar 

  • Tran D, Kadono T, Molas ML, Errakhi R, Briand J, Biligui B, Kawano T, Bouteau F (2012) A role for oxalic acid generation in ozone-induced signalization in Arabidopsis cells. Plant Cell Environ. doi:10.1111/j.1365-3040.2012.02596.x

  • Truman W, Bennett MH, Kubigsteltig I, Turnbull C, Grant M (2007) Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc Natl Acad Sci USA 104:1075–1080

    PubMed  CAS  CrossRef  Google Scholar 

  • Umemura K, Satoh J, Iwata M, Uiozumi N, Koga J, Kawano T, Koshiba T, Anzai H, Mitomi M (2009) Contribution of salicylic acid glucosyltransferase, OsSGT1, to chemically induced disease resistance in rice plants. Plant J 57:463–472

    PubMed  CAS  CrossRef  Google Scholar 

  • Utoguchi N, Watanabe Y, Takase Y, Suzuki T, Matsumoto M (1999) Carrier-mediated absorption of salicylic acid from hamster cheek pouch mucosa. J Pharmacol Sci 88:142–146

    CAS  CrossRef  Google Scholar 

  • Vernooij B, Friedrich L, Morse A, Reist R, Kolditz-Jawhar R, Ward E, Uknes S, Kessmann H, Ryals J (1994) Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6:959–965

    PubMed  CAS  Google Scholar 

  • Vlot AC, Klessig DF, Park S-W (2008) Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol 11:436–442

    PubMed  CAS  CrossRef  Google Scholar 

  • Vlot AC, Dempsey DM, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    PubMed  CAS  CrossRef  Google Scholar 

  • Wang YJ, Yu JN, Chen T, Zhang ZG, Hao YJ, Zhang JS, Chen SY (2005) Functional analysis of a putative Ca2+ channel gene TaTPC1 from wheat. J Exp Bot 56:3051–3060

    PubMed  CAS  CrossRef  Google Scholar 

  • Weissman G (1991) Aspirin. Sci Am 264:84–90

    CrossRef  Google Scholar 

  • White RF (1979) Acetylsalicylic acid induces resistance to tobacco mosaic virus in tobacco. Virology 99:410–412

    PubMed  CAS  CrossRef  Google Scholar 

  • White PJ, Bowen HC, Demidchik V, Nichols C, Davies JM (2002) Genes for calcium-permeable channels in the plasma membrane of plant root cells. Biochim Biophys Acta 1564:299–309

    PubMed  CAS  CrossRef  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defense. Nature 414:562–565

    PubMed  CAS  CrossRef  Google Scholar 

  • Wildon DC, Doherty HM, Eagles G, Bowles DJ, Thain JF (1989) Systemic responses arising from localized heat stimuli in tomato plants. Ann Bot 64:691–695

    Google Scholar 

  • Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD, Doherty HM, O’Donnell PJ, Bowles DJ (1992) Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65

    CAS  CrossRef  Google Scholar 

  • Xia Y, Suzuki H, Borevitz J, Blount J, Guo Z, Patel K, Dixon RA, Lamb C (2004) An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J 23:980–988

    PubMed  CAS  CrossRef  Google Scholar 

  • Yalpani N, Siverman P, Wilson TMA, Kleier DA, Raskin I (1991) Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3:809–818

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H (2003) Oxidative stress triggered by aluminum in plant roots. Plant Soil 255:239–243

    CAS  CrossRef  Google Scholar 

  • Yokawa K, Kagenishi T, Kawano T, Mancuso S, Baluška F (2011) Illumination of Arabidopsis roots induces immediate burst of ROS production. Plant Signal Behav 6:1457–1461

    CrossRef  CAS  Google Scholar 

  • Yoshioka H, Sugie K, Park HJ, Maeda H, Tsuda N, Kawakita K, Doke N (2001) Induction of plant gp91phox homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato. Mol Plant-Microbe Interact 14:725–736

    PubMed  CAS  CrossRef  Google Scholar 

  • Yoshioka H, Bouteau F, Kawano T (2008) Discovery of oxidative burst in the field of plant immunity: looking back at the early pioneering works and towards the future development. Plant Signal Behav 3:153–155

    PubMed  CrossRef  Google Scholar 

  • Zhu MX, Ma J, Parrington J, Galione A, Evans AM (2010) TPCs: endolysosomal channels for Ca2+ mobilization from acidic organelles triggered by NAADP. FEBS Lett 584:1966–1974

    PubMed  CAS  CrossRef  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from Regional Innovation Strategy Support Program 2012, MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomonori Kawano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kawano, T., Bouteau, F. (2013). Salicylic Acid-Induced Local and Long-Distance Signaling Models in Plants. In: Baluška, F. (eds) Long-Distance Systemic Signaling and Communication in Plants. Signaling and Communication in Plants, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36470-9_2

Download citation