Skip to main content

Macromolecules Trafficking in the Phloem and Interorgan Communication

  • 2113 Accesses

Part of the Signaling and Communication in Plants book series (SIGCOMM,volume 19)

Abstract

The phloem is a major component of the vascular tissue responsible for the delivery of photoassimilates and nutrients from source (photosynthetically active) tissues to sink organs. The presence of active plasmodesmata between the companion cells–sieve element complex and adjacent cells creates a symplastic continuum connecting almost all cells, even at distant tissues. That phloem sap contains a wide repertoire of proteins has long been established. It is, however, only been recently established that thousands of RNA molecules are also present within the sieve tube. While a large number of these macromolecules were identified through the use of modern analytical tools combined with bioinformatics methods, a biological role explaining their presence in the sieve tube is assigned to only a few. Insights provided by long-distance movement of viral particles conjoined with the characterization of several phloem sap proteins and RNA molecules form the foundation of the hypothesis that macromolecules play a role in the plant’s long-distance communication signaling system. A future challenge is to dissect the mechanism by which plants control trafficking of these macromolecules from their site of synthesis through the sieve tube and all the way to their target cells.

Keywords

  • Cell-to-cell movement
  • Grafting
  • Phloem sap
  • Plasmodesmata
  • Proteins
  • RNA
  • viroids

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-36470-9_14
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-36470-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

References

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    PubMed  CrossRef  CAS  Google Scholar 

  • Aoki K, Suzui N, Fujimaki S, Dohmae N, Yonekura-Sakakibara K, Fujiwara T, Hayashi H, Yamaya T, Sakakibara H (2005) Destination-selective long-distance movement of phloem proteins. Plant Cell 17:1801–1814

    PubMed  CrossRef  CAS  Google Scholar 

  • Asano T, Masumura T, Kusano H, Kikuchi S, Kurita A, Shimada H, Kadowaki K (2002) Construction of a specialized cDNA library from plant cells isolated by laser capture microdissection: toward comprehensive analysis of the genes expressed in the rice phloem. Plant J 32:401–408

    PubMed  CrossRef  CAS  Google Scholar 

  • Balachandran S, Xiang Y, Schobert C, Thompson GA, Lucas WJ (1997) Phloem sap proteins from Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata. Proc Natl Acad Sci USA 94:14150–14155

    PubMed  CrossRef  CAS  Google Scholar 

  • Barnes A, Bale J, Constantinidou C, Ashton P, Jones A, Pritchard J (2004) Determining protein identity from sieve element sap in Ricinus communis L. by quadrupole time of flight (Q-TOF) mass spectrometry. J Exp Bot 55:1473–1481

    PubMed  CrossRef  CAS  Google Scholar 

  • Behnke H-D (1989) Structure of the phloem. In: Baker DA, Milburn JA (eds) Transport of photoassimilates. Longman Scientific & Technical, Harlow, pp 79–137

    Google Scholar 

  • Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J (2008) Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J 53:739–749

    PubMed  CrossRef  CAS  Google Scholar 

  • Buhtz A, Pieritz J, Springer F, Springer F, Kehr J (2010) Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biol 10:64

    PubMed  CrossRef  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    PubMed  CrossRef  CAS  Google Scholar 

  • Diener TO (1979) Viroids: structure and function. Science 205:859–866

    PubMed  CrossRef  CAS  Google Scholar 

  • Ding X, Shintaku MH, Carter SA, Nelson RS (1996) Invasion of minor veins of tobacco leaves inoculated with tobacco mosaic virus mutants defective in phloem-dependent movement. Proc Natl Acad Sci USA 93:11155–11160

    PubMed  CrossRef  CAS  Google Scholar 

  • Ding B, Itaya A, Zhong X (2005) Viroid trafficking: a small RNA makes a big move. Curr Opin Plant Biol 8:606–612

    PubMed  CrossRef  CAS  Google Scholar 

  • Esau K (1968) Viruses in plant hosts: form, distribution, and pathogenic effects. The University of Wisconsin Press, Madison, WI

    Google Scholar 

  • Esau K (1969) Encyclopedia of plant anatomy. Gebruder Borntraeger, Berlin

    Google Scholar 

  • Esau K, Cronshaw J, Hoefert LL (1967) Relation of beet yellows virus to the phloem and to movement in the sieve tube. J Cell Biol 32:71–87

    PubMed  CrossRef  CAS  Google Scholar 

  • Fisher DB, Frame JM (1984) A guide to the use of the exuding-stylet technique in phloem physiology. Planta 161:385–393

    CrossRef  Google Scholar 

  • Fisher DB, Wu Y, Ku MS (1992) Turnover of soluble proteins in the wheat sieve tube. Plant Physiol 100:1433–1441

    PubMed  CrossRef  CAS  Google Scholar 

  • Fukumorita T, Chino M (1982) Sugar, amino acid and inorganic contents in rice phloem sap. Plant Cell Physiol 23:273–283

    CAS  Google Scholar 

  • Gamalei YV (1989) Structure and function of leaf minor veins in trees and herbs. A taxonomic review. Trees 3:96–110

    CrossRef  Google Scholar 

  • Gaupels F, Buhtz A, Knauer T, Deshmukh S, Waller F, van Bel AJE, Kogel K-H, Kehr J (2008) Adaptation of aphid stylectomy for analyses of proteins and mRNA in barley phloem sap. J Exp Bot 59:3297–3306

    PubMed  CrossRef  CAS  Google Scholar 

  • Giavalisco P, Kapitza K, Kolasa A, Buhtz A, Kehr J (2006) Towards the proteome of Brassica napus phloem sap. Proteomics 6:896–909

    PubMed  CrossRef  CAS  Google Scholar 

  • Golecki B, Schulz A, Thompson GA (1999) Translocation of structural P proteins in the phloem. Plant Cell 11:127–140

    PubMed  CAS  Google Scholar 

  • Gomez G, Pallas V (2004) A long-distance translocatable phloem protein from cucumber forms a ribonucleoprotein complex in vivo with Hop stunt viroid RNA. J Virol 78:10104–10110

    PubMed  CrossRef  CAS  Google Scholar 

  • Gomez G, Torres H, Pallas V (2005) Identification of translocatable RNA-binding phloem proteins from melon, potential components of the long-distance RNA transport system. Plant J 41:107–116

    PubMed  CrossRef  CAS  Google Scholar 

  • Goodrick BJ, Kuhn CW, Hussey RS (1991) Restricted systemic movement of cowpea chlorotic mottle virus in soybean with nonnecrotic resistance. Phytopathology 81:1426–1431

    CrossRef  Google Scholar 

  • Gottschalk M, Dolgener E, Xoconostle-Cazares B, Lucas WJ, Komor E, Schobert C (2008) Ricinus communis cyclophilin: functional characterisation of a sieve tube protein involved in protein folding. Planta 228:687–700

    PubMed  CrossRef  CAS  Google Scholar 

  • Graham LE (1993) Origin of land plants. Wiley, New York

    Google Scholar 

  • Haebel S, Kehr J (2001) Matrix-assisted laser desorption/ionization time of flight mass spectrometry peptide mass fingerprints and post source decay: a tool for the identification and analysis of phloem proteins from Cucurbita maxima Duch. separated by two-dimensional polyacrylamide gel electrophoresis. Planta 213:586–593

    PubMed  CrossRef  CAS  Google Scholar 

  • Ham BK, Brandom JL, Xoconostle-Cazares B, Ringgold V, Lough TJ, Lucas WJ (2009) A polypyrimidine tract binding protein, pumpkin RBP50, forms the basis of a phloem-mobile ribonucleoprotein complex. Plant Cell 21:197–215

    PubMed  CrossRef  CAS  Google Scholar 

  • Haupt S, Oparka KJ, Sauer N, Neumann S (2001) Macromolecular trafficking between Nicotiana tabacum and the holoparasite Cuscuta reflexa. J Exp Bot 52:173–177

    PubMed  CrossRef  CAS  Google Scholar 

  • Imlau A, Truernit E, Sauer N (1999) Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues. Plant Cell 11:309–322

    PubMed  CAS  Google Scholar 

  • Ishiwatari Y, Honda C, Kawashima I, Nakamura S, Hirano H, Mori S, Fujiwara T, Hayashi H, Chino M (1995) Thioredoxin h is one of the major proteins in rice phloem sap. Planta 195:456–463

    PubMed  CrossRef  CAS  Google Scholar 

  • Ishiwatari Y, Fujiwara T, McFarland KC, Nemoto K, Hayashi H, Chino M, Lucas WJ (1998) Rice phloem thioredoxin h has the capacity to mediate its own cell-to-cell transport through plasmodesmata. Planta 205:12–22

    PubMed  CrossRef  CAS  Google Scholar 

  • Ivashikina N, Deeken R, Ache P, Kranz E, Pommerrenig B, Sauer N, Hedrich R (2003) Isolation of AtSUC2 promoter-GFP-marked companion cells for patch-clamp studies and expression profiling. Plant J 36:931–945

    PubMed  CrossRef  CAS  Google Scholar 

  • Jaeger KE, Wigge PA (2007) FT protein acts as a long-range signal in Arabidopsis. Curr Biol 17:1050–1054

    PubMed  CrossRef  CAS  Google Scholar 

  • Kehr J, Buhtz A (2008) Long distance transport and movement of RNA through the phloem. J Exp Bot 59:85–92

    PubMed  CrossRef  CAS  Google Scholar 

  • King RW, Zeevaart JA (1973) Floral stimulus movement in perilla and flower inhibition caused by noninduced leaves. Plant Physiol 51:727–738

    PubMed  CrossRef  CAS  Google Scholar 

  • Kollmann R, Dörr I, Kleinig H (1970) Protein filaments-structural components of the phloem exudate. Planta 95:86–94

    CrossRef  CAS  Google Scholar 

  • Li P, Ham BK, Lucas WJ (2011) CmRBP50 protein phosphorylation is essential for assembly of a stable phloem-mobile high-affinity ribonucleoprotein complex. J Biol Chem 286:23142–23149

    PubMed  CrossRef  CAS  Google Scholar 

  • Lin MK, Belanger H, Lee YJ, Varkonyi-Gasic E, Taoka K, Miura E, Xoconostle-Cazares B, Gendler K, Jorgensen RA, Phinney B, Lough TJ, Lucas WJ (2007) FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 19:1488–1506

    PubMed  CrossRef  CAS  Google Scholar 

  • Lin M-K, Lee Y-J, Lough TJ, Phinney BS, Lucas WJ (2009) Analysis of the pumpkin phloem proteome provides functional insights into angiosperm sieve tube function. Mol Cell Proteomics 8:343–356

    PubMed  CAS  Google Scholar 

  • Lough TJ, Lucas WJ (2006) Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu Rev Plant Biol 5:203–232

    CrossRef  Google Scholar 

  • Lucas WJ, Wolf S (1993) Plasmodesmata: the intercellular organelle of green plants. Trends Cell Biol 3:308–315

    PubMed  CrossRef  CAS  Google Scholar 

  • Madore MA, Oross JW, Lucas WJ (1986) Symplastic transport in Ipomoea tricolor source leaves: demonstration of functional symplastic connections from mesophyll to minor veins by a novel dye-tracer method. Plant Physiol 82:432–442

    PubMed  CrossRef  CAS  Google Scholar 

  • Mathieu J, Warthmann N, Kuttner F, Schmid M (2007) Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr Biol 17:1055–1060

    PubMed  CrossRef  CAS  Google Scholar 

  • Moran PJ, Cheng Y, Cassell JL, Thompson GA (2002) Gene expression profiling of Arabidopsis thaliana in compatible plant-aphid interactions. Arch Insect Biochem Physiol 51:182–203

    PubMed  CrossRef  CAS  Google Scholar 

  • Munch E (1930) Die stoffbewegung in der pflanze. Gustav Fischer, Jena

    Google Scholar 

  • Nadler-Hassar T, Goldshmidt A, Rubin B, Wolf S (2004) Glyphosate inhibits the translocation of green fluorescent protein and sucrose from a transgenic tobacco host to Cuscuta campestris Yunk. Planta 219:790–796

    PubMed  CrossRef  CAS  Google Scholar 

  • Nakamura S, Hayashi H, Mori S, Chino M (1993) Protein phosphorylation in the sieve tubes of rice plants. Plant Cell Physiol 34:927–933

    CAS  Google Scholar 

  • Nakamura S, Hayashi H, Mori S, Chino M (1995) Detection and characterization of protein kinases in rice phloem sap. Plant Cell Physiol 36:19–27

    CAS  Google Scholar 

  • Nakazono M, Qiu F, Borsuk LA, Schnable PS (2003) Laser capture microdissection, a tool for the global analysis of gene expression in specific cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell 15:583–596

    PubMed  CrossRef  CAS  Google Scholar 

  • Omid A, Keilin T, Glass D, Leshkowitz D, Wolf S (2007) Characterization of phloem-sap transcription profile in melon plants. J Exp Bot 58:3645–3656

    PubMed  CrossRef  CAS  Google Scholar 

  • Palukaitis P (1987) Potato spindle tuber viroid. Investigation of the long-distance intra-plant transport route. Virology 158:239–241

    PubMed  CrossRef  CAS  Google Scholar 

  • Pant BD, Buhtz A, Kehr J, Scheible WR (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53:731–738

    PubMed  CrossRef  CAS  Google Scholar 

  • Peleg G, Malter D, Wolf S (2007) Viral infection enables phloem loading of GFP and long-distance movement of the protein. Plant J 51:165–172

    PubMed  CrossRef  CAS  Google Scholar 

  • Petersen MC, Hejgaard J, Thompson GA, Schulz A (2005) Cucurbit phloem serpins are graft-transmissible and appear to be resistant to turnover in the sieve element–companion cell complex. J Exp Bot 56:3111–3120

    CrossRef  Google Scholar 

  • Pommerrenig B, Barth I, Niedermeier M, Kopp S, Schmid J, Dwyer RA, McNair RJ, Klebl F, Sauer N (2006) Common plantain. A collection of expressed sequence tags from vascular tissue and simple and efficient transformation method. Plant Physiol 142:1427–1441

    PubMed  CrossRef  CAS  Google Scholar 

  • Qi Y, Pelissier T, Itaya A, Hunt E, Wassenegger M, Ding B (2004) Direct role of a viroid RNA motif in mediating directional RNA trafficking across a specific cellular boundary. Plant Cell 16:1741–1752

    PubMed  CrossRef  CAS  Google Scholar 

  • Raven JA (1993) The evolution of vascular plants in relation to quantitative functioning of water-conducting cells and stomata. Biol Dev 68:337–363

    Google Scholar 

  • Robards AW, Lucas WJ (1990) Plasmodesmata. Annu Rev Plant Physiol Plant Mol Biol 41:369–419

    CrossRef  Google Scholar 

  • Ruiz-Medrano R, Xoconostle-Cazares B, Lucas WJ (1999) Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126:4405–4419

    PubMed  CAS  Google Scholar 

  • Scarpella E, Helariutta Y (2010) Vascular pattern formation in plants. Curr Top Dev Biol 91:221–265

    PubMed  CrossRef  CAS  Google Scholar 

  • Schobert C, Gottschalk M, Kovar DR, Staiger CJ, Yoo BC, Lucas WJ (2000) Characterization of Ricinus communis phloem profilin, RcPRO1. Plant Mol Biol 45:719–730

    CrossRef  Google Scholar 

  • Schultz A (1998) Phloem: structure related to function. Cell Biol Physiol 59:429–475

    Google Scholar 

  • Sjolund RD, Shin CY (1983) Freeze-fracture analysis of phloem structure in plant tissues culture. I. The sieve element reticulum. J Ultrastruct Res 82:111–121

    PubMed  CrossRef  CAS  Google Scholar 

  • Stadler R, Wright KM, Lauterbach C, Amon G, Gahrtz M, Feuerstein A, Oparka KJ, Sauer N (2005) Expression of GFP-fusions in Arabidopsis companion cells reveals nonspecific protein trafficking into sieve elements and identifies a novel postphloem domain in roots. Plant J 41:319–331

    PubMed  CrossRef  CAS  Google Scholar 

  • Takada S, Goto K (2003) Terminal flower2, an Arabidopsis homolog of heterochromatin protein1, counteracts the activation of flowering locus T by constans in the vascular tissues of leaves to regulate flowering time. Plant Cell 15:2856–2865

    PubMed  CrossRef  CAS  Google Scholar 

  • Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036

    PubMed  CrossRef  CAS  Google Scholar 

  • Taoka K, Ham BK, Xoconostle-Cazares B, Rojas MR, Lucas WJ (2007) Reciprocal phosphorylation and glycosylation recognition motifs control NCAPP1 interaction with pumpkin phloem proteins and their cell-to-cell movement. Plant Cell 19:1866–1884

    PubMed  CrossRef  CAS  Google Scholar 

  • Thompson JR, García-Arenal F (1998) The bundle sheath-phloem interface of Cucumis sativus is a boundary to systemic infection by tomato aspermy virus. Mol Plant Microbe Interact 11:109–114

    CrossRef  CAS  Google Scholar 

  • Thompson GA, Schulz A (1999) Macromolecular trafficking in the phloem. Trends Plant Sci 4:354–360

    PubMed  CrossRef  Google Scholar 

  • Turgeon R, Beebe DU (1991) The evidence for symplastic phloem loading. Plant Physiol 96:349–354

    PubMed  CrossRef  CAS  Google Scholar 

  • Turgeon R, Webb JA, Evert RF (1975) Ultrastructure of minor veins in Cucurbita pepo leaves. Protoplasma 83:217–232

    CrossRef  Google Scholar 

  • van Bel AJE (1993) Strategies of phloem loading. Annu Rev Plant Physiol Plant Mol Biol 44:253–281

    CrossRef  Google Scholar 

  • van Bel AJE (1999) Evolution, polymorphology and multifunctionality of the phloem system. Perspect Plant Ecol Evol Syst 2:163–184

    CrossRef  Google Scholar 

  • van Bel AJE, van Rijen HVM (1994) Microelectrode-recorded development of the symplasmic autonomy of the sieve element/companion cell complex in the stem phloem of Lupinus luteus L. Planta 192:165–175

    CrossRef  Google Scholar 

  • Vilaine F, Palauqui J-C, Amselem J, Kusiak C, Lemoine R, Dinant S (2003) Towards deciphering phloem: a transcriptome analysis of the phloem of Apium graveolens. Plant J 36:67–81

    PubMed  CrossRef  CAS  Google Scholar 

  • Wang Y, Ding B (2010) Viroids: small probes for exploring the vast universe of RNA trafficking in plants. J Integr Plant Biol 52:28–39

    PubMed  CrossRef  CAS  Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    PubMed  CrossRef  CAS  Google Scholar 

  • Xoconostle-Cazares B, Xiang Y, Ruiz-Medrano R, Wang HL, Monzer J, Yoo BK, MacFarland KC, Franceschi VR, Lucas WJ (1999) Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science 283:94–98

    PubMed  CrossRef  CAS  Google Scholar 

  • Yoo BC, Kragler F, Varkonyi-Gasic E, Haywood V, Archer-Evans S, Lee YM, Lough TJ, Lucas WJ (2004) A systemic small RNA signaling system in plants. Plant Cell 16:1979–2000

    PubMed  CrossRef  CAS  Google Scholar 

  • Zhang S, Sun L, Kragler F (2009) The phloem-delivered RNA pool contains small noncoding RNAs and interferes with translation. Plant Physiol 150:378–387

    PubMed  CrossRef  CAS  Google Scholar 

  • Zhong X, Tao X, Stombaugh J, Leontis N, Ding B (2007) Tertiary structure and function of an RNA motif required for plant vascular entry to initiate systemic trafficking. EMBO J 26:3836–3846

    PubMed  CrossRef  CAS  Google Scholar 

  • Ziegler H (1975) Nature of transported substances in the phloem. In: Zimmermann MH, Milburn JA (eds) Encyclopedia of plant physiology, vol 1. Springer, Berlin, pp 59–100

    Google Scholar 

Download references

Acknowledgments

Research in the authors’ laboratory was supported by the United States–Israel Binational Science Foundation (BSF 2007052) and by the Israel Science Foundation (ISF 380/06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shmuel Wolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spiegelman, Z., Golan, G., Wolf, S. (2013). Macromolecules Trafficking in the Phloem and Interorgan Communication. In: Baluška, F. (eds) Long-Distance Systemic Signaling and Communication in Plants. Signaling and Communication in Plants, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36470-9_14

Download citation