Skip to main content

Systemic Signalling in Legume Nodulation: Nodule Formation and Its Regulation

Part of the Signaling and Communication in Plants book series (SIGCOMM,volume 19)

Abstract

Legume plants are able to enter into a symbiotic relationship with rhizobia bacteria. This results in the formation of a novel organ on the root called the nodule, where the rhizobia are housed. The rhizobia provide the host plant with nitrogen in exchange for carbohydrates. Successful nodule formation and sustainable nodulation involve complex signalling events. This includes systemic signalling between the symbiotic partners, and also signalling between the root and shoot of the plant. Factors such as plant hormone levels and environmental conditions for growth influence these systemic signalling pathways. This chapter investigates the different types of long-distance signalling events that are necessary for the development and regulation of legume nodulation.

Keywords

  • Auto Regulation of Nodulation (AON)
  • Shoot Derived Inhibitor (SDI)
  • CLE peptide
  • Rhizobia
  • Flavonoid
  • Hormone
  • Acid

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-36470-9_11
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-36470-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

References

  • Caetano-Anollés G, Gresshoff PM (1991) Plant genetic control of nodulation. Annu Rev Microbiol 45:345–382

    PubMed  CrossRef  Google Scholar 

  • Carroll BJ, McNeil DL, Gresshoff PM (1985a) A supernodulation and nitrate-tolerant symbiotic (nts) soybean mutant. Plant Physiol 78:34–40

    PubMed  CrossRef  CAS  Google Scholar 

  • Carroll BJ, McNeil DL, Gresshoff PM (1985b) Isolation and properties of soybean [Glycine max (L.) Merr.] mutants that nodulate in the presence of high nitrate concentrations. Proc Natl Acad Sci USA 82:4162–4166

    PubMed  CrossRef  CAS  Google Scholar 

  • Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575–585

    PubMed  CrossRef  CAS  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific LLC, San Carlos, CA [http://www.pymol.org]

  • Delves AC, Mathews A, Day DA, Carter AS, Carroll BJ, Gresshoff PM (1986) Regulation of the soybean-Rhizobium nodule symbiosis by shoot and root factors. Plant Physiol 82:588–590

    PubMed  CrossRef  CAS  Google Scholar 

  • Dénarié J, Debellé F, Promé JC (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535

    PubMed  CrossRef  Google Scholar 

  • Dixon RA, Pasinetti GM (2010) Flavonoids and Isoflavonoids: from plant biology to agriculture and neuroscience. Plant Physiol 154:453–457

    PubMed  CrossRef  CAS  Google Scholar 

  • Ferguson BJ, Mathesius U (2003) Signaling interactions during nodule development. J Plant Growth Regul 22:47–72

    CrossRef  CAS  Google Scholar 

  • Ferguson BJ, Ross JJ, Reid JB (2005) Nodulation phenotypes of gibberellin and brassinosteroid mutants of pea. Plant Physiol 138:2396–2405

    PubMed  CrossRef  CAS  Google Scholar 

  • Ferguson BJ, Indrasumunar A, Hayashi S, Lin M-H, Lin Y-H, Reid DE, Gresshoff PM (2010) Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol 52:61–76

    PubMed  CrossRef  CAS  Google Scholar 

  • Ferguson BJ (2013) The development and regulation of soybean nodules. In: Board JE (ed) A comprehensive survey of international soybean research - genetics, physiology, agronomy, and nitrogen relationships. InTech—Open Access, http://dx.doi.org/105772/52573, pp 31–47

  • Ferguson BJ, Lin MH, Gresshoff PM (2013) Regulation of legume nodulation by acidic growth conditions. Plant Signal Behav 8:e23426

    PubMed  CrossRef  Google Scholar 

  • Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G, Hannibal L, Fardoux J, Kojadinovic M, Vuillet L, Lajus A, Cruveiller S, Rouy Z, Mangenot S, Segurens B, Dossat C, Franck WL, Chang WS, Saunders E, Bruce D, Richardson P, Normand P, Dreyfus B, Pignol D, Stacey G, Emerich D, Verméglio A, Médigue C, Sadowsky M (2007) Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science 316:1307–1312

    PubMed  CrossRef  Google Scholar 

  • Hayashi S, Reid DE, Lorenc MT, Stiller J, Edwards D, Gresshoff PM, Ferguson BJ (2012) Transient Nod factor-dependent gene expression in the nodulation-competent zone of soybean (Glycine max [L.] Merr.) roots. Plant Biotechnol J 10:995–1010

    PubMed  CrossRef  CAS  Google Scholar 

  • Indrasumunar A, Kereszt A, Searle I, Miyagi M, Li D, Nguyen CDT, Men A, Carroll BJ, Gresshoff PM (2010) Inactivation of duplicated Nod factor receptor 5 (NFR5) genes in recessive loss-of-function nonnodulation mutants of allotetraploid soybean (Glycine max L. Merr.). Plant Cell Physiol 51:201–214

    PubMed  CrossRef  CAS  Google Scholar 

  • Indrasumunar A, Searle I, Lin M-H, Kereszt A, Men A, Carroll BJ, Gresshoff PM (2011) Nodulation factor receptor kinase 1α controls nodule organ number in soybean (Glycine max L. Merr.). Plant J 65:39–50

    PubMed  CrossRef  CAS  Google Scholar 

  • Jeong S, Trotochaud AE, Clark SE (1999) The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11:1925–1933

    PubMed  CAS  Google Scholar 

  • Jones KM, Sharopova N, Lohar DP, Zhang JQ, VandenBosch KA, Walker GC (2008) Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant. Proc Natl Acad Sci USA 105:704–709

    PubMed  CrossRef  CAS  Google Scholar 

  • Kelley LA, Sternberg MJE (2009) Protein structure prediction on the Web: a case study using the phyre server. Nat Protocols 4:363–371

    CrossRef  CAS  Google Scholar 

  • Kelly SJ, Muszyński A, Kawaharada Y, Hubber AM, Sullivan JT, Sandal N, Carlson RW, Stougaard J, Ronson CW (2012) Conditional requirement for exopolysaccharide in the Mesorhizobium-Lotus symbiosis. Mol Plant-Microbe Interact 26:319–329

    Google Scholar 

  • Kinkema M, Gresshoff PM (2008) Investigation of downstream signals of the soybean autoregulation of nodulation receptor kinase GmNARK. Mol Plant-Microbe Interact 21:1337–1348

    PubMed  CrossRef  CAS  Google Scholar 

  • Krusell L, Madsen LH, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, de Bruijn F, Pajuelo E, Sandal N, Stougaard J (2002) Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 420:422–426

    PubMed  CrossRef  CAS  Google Scholar 

  • Krusell L, Sato N, Fukuhara I, Koch BEV, Grossmann C, Okamoto S, Oka-Kira E, Otsubo Y, Aubert G, Nakagawa T, Sato S, Tabata S, Duc G, Parniske M, Wang TL, Kawaguchi M, Stougaard J (2011) The Clavata2 genes of pea and Lotus japonicus affect autoregulation of nodulation. Plant J 65:861–871

    PubMed  CrossRef  CAS  Google Scholar 

  • Leigh JA, Signer ER, Walker GC (1985) Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc Natl Acad Sci USA 82:6231–6235

    PubMed  CrossRef  CAS  Google Scholar 

  • Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Promé JC, Dénarié J (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344:781–784

    PubMed  CrossRef  CAS  Google Scholar 

  • Li D, Kinkema M, Gresshoff PM (2009) Autoregulation of nodulation (AON) in Pisum sativum (pea) involves signalling events associated with both nodule primordia development and nitrogen fixation. J Plant Physiol 166:955–967

    PubMed  CrossRef  CAS  Google Scholar 

  • Lim CW, Lee YW, Hwang CH (2011) Soybean nodule-enhanced CLE peptides in roots act as signals in GmNARK-mediated nodulation suppression. Plant Cell Physiol 52:1613–1627

    PubMed  CrossRef  CAS  Google Scholar 

  • Lin Y-H, Ferguson BJ, Kereszt A, Gresshoff PM (2010) Suppression of hypernodulation in soybean by a leaf-extracted, NARK- and Nod factor-dependent small molecular fraction. New Phytol 185:1074–1086

    PubMed  CrossRef  CAS  Google Scholar 

  • Lin Y-H, Lin M-H, Gresshoff PM, Ferguson BJ (2011) An efficient petiole-feeding bioassay for introducing aqueous solutions into dicotyledonous plants. Nat Protoc 6:36–45

    PubMed  CrossRef  CAS  Google Scholar 

  • Lin M-H, Gresshoff PM, Ferguson BJ (2012) Systemic regulation of soybean nodulation by acid growth condition. Plant Physiol 160(4):2028–2039

    PubMed  CrossRef  CAS  Google Scholar 

  • Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anollés G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100:1444–1449

    PubMed  CrossRef  CAS  Google Scholar 

  • Mathesius U (2013) SUNN mediates long-distance signalling in nodulation. In: Baluska F (ed) Long-distance systemic signaling and communication in plants, signaling and communication in plants. Springer, Heidelberg

    Google Scholar 

  • Miyazawa H, Oka-Kira E, Sato N, Takahashi H, Wu G-J, Sato S, Hayashi M, Betsuyaku S, Nakazono M, Tabata S, Harada K, Sawa S, Fukuda H, Kawaguchi M (2010) The receptor-like kinase KLAVIER mediates systemic regulation of nodulation and non-symbiotic shoot development in Lotus japonicus. Development 137:4317–4325

    PubMed  CrossRef  CAS  Google Scholar 

  • Mortier V, Den Herder G, Whitford R, Van de Velde W, Rombauts S, D’haeseleer K, Holsters M, Goormachtig S (2010) CLE peptides control Medicago truncatula nodulation locally and systemically. Plant Physiol 153:222–237

    PubMed  CrossRef  CAS  Google Scholar 

  • Nakagawa T, Kawaguchi M (2006) Shoot-applied MeJA suppresses root nodulation in Lotus japonicus. Plant Cell Physiol 47:176–180

    PubMed  CrossRef  CAS  Google Scholar 

  • Nishimura R, Hayashi M, Wu G-J, Kouchi H, Imaizumi-Anraku H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M, Harada K, Kawaguchi M (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420:426–429

    PubMed  CrossRef  CAS  Google Scholar 

  • Oka-Kira E, Tateno K, Miura K, Miura K, Haga T, Hayashi M, Harada K, Sato S, Tabata S, Shikazono N, Tanaka A, Watanabe Y, Fukuhara I, Nagata T, Kawaguchi M (2005) klavier (klv), a novel hypernodulation mutant of Lotus japonicus affected in vascular tissue organization and floral induction. Plant J 44:505–515

    PubMed  CrossRef  CAS  Google Scholar 

  • Okamoto S, Ohnishi E, Sato S, Takahashi H, Nakazono M, Tabata S, Kawaguchi M (2009) Nod factor/nitrate-induced CLE genes that drive HAR1-mediated systemic regulation of nodulation. Plant Cell Physiol 50:67–77

    PubMed  CrossRef  CAS  Google Scholar 

  • Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980

    PubMed  CrossRef  CAS  Google Scholar 

  • Pueppke SG, Broughton WJ (1999) Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol Plant-Microbe Interact 12:293–318

    PubMed  CrossRef  CAS  Google Scholar 

  • Redmond JW, Batley M, Djordjevic MA, Innes RW, Kuempel PL, Rolfe BG (1986) Flavones induce expression of nodulation genes in Rhizobium. Nature 323:632–635

    CrossRef  CAS  Google Scholar 

  • Reid DE, Ferguson BJ, Hayashi S, Lin Y-H, Gresshoff PM (2011a) Molecular mechanisms controlling legume autoregulation of nodulation. Ann Bot 108:789–795

    PubMed  CrossRef  CAS  Google Scholar 

  • Reid DE, Ferguson BJ, Gresshoff PM (2011b) NARK-dependent nodule regulation is activated in the shoot and root in response to inoculation and nitrate induced CLE peptides of soybean. Mol Plant-Microbe Interact 24:606–618

    PubMed  CrossRef  CAS  Google Scholar 

  • Reid DE, Hayashi S, Lorenc M, Stiller J, Edwards D, Gresshoff PM, Ferguson BJ (2012) Identification of systemic responses in soybean nodulation by xylem sap feeding and complete transcriptome sequencing reveal a novel component of the autoregulation pathway. Plant Biotechnol J 10:680–689

    PubMed  CrossRef  CAS  Google Scholar 

  • Reid D, Li D, Ferguson BJ, Gresshoff PM (2013) Structure-function analysis of the GmRIC1 signal peptide and CLE domain required for nodulation control in soybean. J Exp Bot. doi: 10.1093/jxb/ert008

  • Rival P, de Billy F, Bono JJ, Gough C, Rosenberg C, Bensmihen S (2012) Epidermal and cortical roles of NFP and DMI3 in coordinating early steps of nodulation in Medicago truncatula. Development 139:3383–3391

    PubMed  CrossRef  CAS  Google Scholar 

  • Schnabel E, Journet EP, de Carvalho-Niebel F, Duc G, Frugoli J (2005) The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol Biol 58:809–822

    PubMed  CrossRef  Google Scholar 

  • Searle IR, Men AE, Laniya TS, Buzas DM, Iturbe-Ormaetxe I, Carroll BJ, Gresshoff PM (2003) Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299:109–112

    PubMed  CrossRef  CAS  Google Scholar 

  • Seo HS, Li J, Lee SY, Yu JW, Kim KH, Lee SH, Lee IJ, Paek NC (2007) The hypernodulating nts mutation induces jasmonate synthetic pathway in soybean leaves. Mol Cell 24:185–193

    CAS  Google Scholar 

  • Spaink HP (2000) Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54:257–288

    PubMed  CrossRef  CAS  Google Scholar 

  • Symons GM, Reid JB (2004) Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels. Plant Physiol 135:2196–2206

    PubMed  CrossRef  CAS  Google Scholar 

  • Terakado J, Fujihara S, Goto S, Kuratani R, Suzuki Y, Yoshida S, Yoneyama T (2005) Systemic effect of a brassinosteroid on root nodule formation in soybean as revealed by the application of brassinolide and brassinazaole. Soil Sci Plant Nutr 51:389–395

    CrossRef  CAS  Google Scholar 

  • van Noorden GE, Kerim T, Goffard N, Wiblin R, Pellerone FI, Rolfe BG, Mathesius U (2007) Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti. Plant Physiol 144:1115–1131

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Gresshoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hayashi, S., Gresshoff, P.M., Ferguson, B.J. (2013). Systemic Signalling in Legume Nodulation: Nodule Formation and Its Regulation. In: Baluška, F. (eds) Long-Distance Systemic Signaling and Communication in Plants. Signaling and Communication in Plants, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36470-9_11

Download citation