Skip to main content

Auxin as Long-Distance Signal Controlling Root Architecture in Response to Nitrogen

Part of the Signaling and Communication in Plants book series (SIGCOMM,volume 19)

Abstract

Plants show extensive root plasticity in response to nitrogen availability. Lateral root initiation and emergence are affected by nitrogen concentration and distribution to coordinate the ability to capture maximum nitrogen while minimizing carbon expenditure. Legumes and actinorhizal plants have additionally evolved symbioses with nitrogen-fixing bacteria that leads to the formation of nodules. Nodule numbers are controlled by systemic autoregulation of nodulation (AON) signaling through a receptor-like kinase acting in the shoot. The AON genes also control lateral root formation in response to nitrogen to varying extents in different legumes. Auxin transport control from the shoot to the root is one of the signals affecting nodule and lateral root development, and this is under the control of the AON gene in the legume Medicago truncatula. Nitrogen availability modulates long-distance auxin transport and this partly requires the function of the AON gene. Thus we propose a model in which nitrogen availability is perceived in the shoot, is processed by the AON gene, and feeds back on root architecture via control of shoot-to-root auxin transport.

Keywords

  • Auxin transport
  • Nitrogen
  • Root development
  • Nodulation
  • Autoregulation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-36470-9_10
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-36470-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1

References

  • Alvarez JM, Vidal EA, Gutierrez RA (2012) Integration of local and systemic signaling pathways for plant N responses. Curr Opin Plant Biol 15:185–191

    PubMed  CrossRef  CAS  Google Scholar 

  • Bao J, Chen F, Gu R, Wang G, Zhang F, Mi G (2007) Lateral root development of two Arabidopsis auxin transport mutants, auxl-7 and eirl-1, in response to nitrate supplies. Plant Sci 173:417–425

    CrossRef  CAS  Google Scholar 

  • Bhalerao RP, Eklof J, Ljung K, Marchant A, Bennett M, Sandberg G (2002) Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J 29:325–332

    PubMed  CrossRef  CAS  Google Scholar 

  • Boot KJM, van Brussel AAN, Tak T, Spaink HP, Kijne JW (1999) Lipochitin oligosaccharides from Rhizobium leguminosarum bv. viciae reduce auxin transport capacity in Vicia sativa subsp nigra roots. Mol Plant-Microbe Interact 12:839–844

    CrossRef  CAS  Google Scholar 

  • Caba JM, Recalde L, Ligero F (1998) Nitrate-induced ethylene biosynthesis and the control of nodulation in alfalfa. Plant Cell Environ 21:87–93

    CrossRef  CAS  Google Scholar 

  • Caba JM, Centeno ML, Fernandez B, Gresshoff PM, Ligero F (2000) Inoculation and nitrate alter phytohormone levels in soybean roots: differences between a supernodulating mutant and the wild type. Planta 211:98–104

    PubMed  CrossRef  CAS  Google Scholar 

  • Carroll BJ, McNeil DL, Gresshoff PM (1985a) Isolation and properties of soybean Glycine max (L) Merr mutants that nodulate in the presence of high nitrate concentrations. Proc Natl Acad Sci USA 82:4162–4166

    PubMed  CrossRef  CAS  Google Scholar 

  • Carroll BJ, McNeil DL, Gresshoff PM (1985b) A supernodulation and nitrate-tolerant symbiotic (nts) soybean mutant. Plant Physiol 78:34–40

    PubMed  CrossRef  CAS  Google Scholar 

  • Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inze D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852

    PubMed  CAS  Google Scholar 

  • Day DA, Caroll BJ, Delves AC, Gresshoff PM (1989) Relationship between autoregulation and nitrate inhibition in soybeans. Physiol Plant 75:37–42

    CrossRef  CAS  Google Scholar 

  • Delves AC, Mathews A, Day DA, Carter AS, Carroll BJ, Gresshoff PM (1986) Regulation of the soybean-Rhizobium nodule symbiosis by shoot and root factors. Plant Physiol 82:588–590

    PubMed  CrossRef  CAS  Google Scholar 

  • Dubrovsky JG, Napsucialy-Mendivil S, Duclercq J, Cheng Y, Shishkova S, Ivanchenko MG, Friml J, Murphy AS, Benkovà E (2011) Auxin minimum defines a developmental window for lateral root initiation. New Phytol 191:970–983

    PubMed  CrossRef  CAS  Google Scholar 

  • Forde BG (2002) Local and long-range signaling pathways regulating plant responses to nitrate. Annu Rev Plant Biol 53:203–224

    PubMed  CrossRef  CAS  Google Scholar 

  • Friml J (2003) Auxin transport – shaping the plant. Curr Opin Plant Biol 6:7–12

    PubMed  CrossRef  CAS  Google Scholar 

  • Fukaki H, Okushima Y, Tasaka M (2007) Auxin-mediated lateral root formation in higher plants. Int Rev Cytol 256:111–137

    PubMed  CrossRef  CAS  Google Scholar 

  • Garnett T, Conn V, Kaiser BN (2009) Root based approaches to improving nitrogen use efficiency in plants. Plant Cell Environ 32:1272–1283

    PubMed  CrossRef  CAS  Google Scholar 

  • Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD (2008) Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci USA 105:803–808

    PubMed  CrossRef  CAS  Google Scholar 

  • Guo YF, Chen FJ, Zhang FS, Mi GH (2005) Auxin transport from shoot to root is involved in the response of lateral root growth to localized supply of nitrate in maize. Plant Sci 169:894–900

    CrossRef  CAS  Google Scholar 

  • Gutierrez RA, Lejay LV, Dean A, Chiaromonte F, Shasha DE, Coruzzi GM (2007) Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis. Genome Biol 8:R7

    PubMed  CrossRef  Google Scholar 

  • Hayashi S, et al 2013 Systemic signalling in legume nodulation: nodule formation and its regulation. In: Baluska F (ed) Long-distance systemic signaling and communication in plants. Springer, Heidelberg.

    Google Scholar 

  • Hirsch AM, Bhuvaneswari TV, Torrey JG, Bisseling T (1989) Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. Proc Natl Acad Sci USA 86:1244–1248

    PubMed  CrossRef  CAS  Google Scholar 

  • Jeudy C, Ruffel S, Freixes S, Tillard P, Santoni AL, Morel S, Journet E-P, Duc G, Gojon A, Lepetit M, Salon C (2010) Adaptation of Medicago truncatula to nitrogen limitation is modulated via local and systemic nodule developmental responses. New Phytol 185:817–828

    PubMed  CrossRef  CAS  Google Scholar 

  • Jin J, Watt M, Mathesius U (2012) The autoregulation gene SUNN mediates changes in root organ formation in response to nitrogen through alteration of shoot-to-root auxin transport. Plant Physiol 159:489–500

    PubMed  CrossRef  CAS  Google Scholar 

  • Kosslak RM, Bohlool BB (1984) Suppression of nodule development of one side of a split-root system of soybeans caused by prior inoculation of the other side. Plant Physiol 75:125–130

    PubMed  CrossRef  CAS  Google Scholar 

  • Krouk G, Crawford NM, Coruzzi GM, Tsay Y-F (2010a) Nitrate signaling: adaptation to fluctuating environments. Curr Opin Plant Biol 13:266–273

    PubMed  CrossRef  CAS  Google Scholar 

  • Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, Zazimalova E, Benkova E, Nacry P, Gojon A (2010b) Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell 18:927–937

    PubMed  CrossRef  CAS  Google Scholar 

  • Krusell L, Madsen LH, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, de Bruijn F, Pajuelo E, Sandal N, Stougaard J (2002) Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 420:422–426

    PubMed  CrossRef  CAS  Google Scholar 

  • Kuppusamy KT, Ivashuta S, Bucciarelli B, Vance CP, Gantt JS, VandenBosch KA (2009) Knockdown of CELL DIVISION CYCLE16 reveals an inverse relationship between lateral root and nodule numbers and a link to auxin in Medicago truncatula. Plant Physiol 151:1155–1166

    PubMed  CrossRef  CAS  Google Scholar 

  • Linkohr BI, Williamson LC, Fitter AH, Leyser HMO (2002) Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J 29:751–760

    PubMed  CrossRef  CAS  Google Scholar 

  • Liu J, An X, Cheng L, Chen F, Bao J, Yuan L, Zhang F, Mi G (2010) Auxin transport in maize roots in response to localized nitrate supply. Ann Bot 106:1019–1026

    PubMed  CrossRef  CAS  Google Scholar 

  • Malamy JE, Ryan KS (2001) Environmental regulation of lateral root initiation in Arabidopsis. Plant Physiol 127:899–909

    PubMed  CrossRef  CAS  Google Scholar 

  • Marchant A, Bhalerao R, Casimiro I, Eklof J, Casero PJ, Bennett M, Sandberg G (2002) AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14:589–597

    PubMed  CrossRef  CAS  Google Scholar 

  • Mathesius U (2008) Auxin: at the root of nodule development? Funct Plant Biol 35:651–668

    CrossRef  CAS  Google Scholar 

  • Mathesius U, Schlaman HRM, Spaink HP, Sautter C, Rolfe BG, Djordjevic MA (1998) Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J 14:23–34

    PubMed  CrossRef  CAS  Google Scholar 

  • Mortier V, Den Herder G, Whitford R, Van de Velde W, Rombauts S, D’Haeseleer K, Holsters M, Goormachtig S (2010) CLE peptides control Medicago truncatula nodulation locally and systemically. Plant Physiol 153:222–237

    PubMed  CrossRef  CAS  Google Scholar 

  • Mortier V, De Wever E, Vuylsteke M, Holsters M, Goormachtig S (2012) Nodule numbers are governed by interaction between CLE peptides and cytokinin signaling. Plant J 70:367–376

    PubMed  CrossRef  CAS  Google Scholar 

  • Nishimura R, Hayashi M, Wu GJ, Kouchi H, Imaizumi-Anraku H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M, Harada K, Kawaguchi M (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420:426–429

    PubMed  CrossRef  CAS  Google Scholar 

  • Novak K, Lisa L, Skrdleta V (2011) Pleiotropy of pea RisfixC supernodulation mutation is symbiosis-independent. Plant Soil 342:173–182

    CrossRef  CAS  Google Scholar 

  • Okamoto S, Ohnishi E, Sato S, Takahashi H, Nakazono M, Tabata S, Kawaguchi M (2009) Nod factor/nitrate-induced CLE genes that drive HAR1-mediated systemic regulation of nodulation. Plant Cell Physiol 50:67–77

    PubMed  CrossRef  CAS  Google Scholar 

  • Pacios-Bras C, Schlaman HRM, Boot K, Admiraal P, Langerak JM, Stougaard J, Spaink HP (2003) Auxin distribution in Lotus japonicus during root nodule development. Plant Mol Biol 52:1169–1180

    PubMed  CrossRef  CAS  Google Scholar 

  • Penmetsa RV, Cook DR (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275:527–530

    PubMed  CrossRef  CAS  Google Scholar 

  • Penmetsa RV, Frugoli JA, Smith LS, Long SR, Cook DR (2003) Dual genetic pathways controlling nodule number in Medicago truncatula. Plant Physiol 131:998–1008

    PubMed  CrossRef  CAS  Google Scholar 

  • Perrine-Walker F, Doumas P, Lucas M, Vaissayre V, Beauchemin NJ, Band LR, Chopard J, Crabos A, Conejero G, Peret B, King JR, Verdeil JL, Hocher V, Franche C, Bennett MJ, Tisa LS, Laplaze L (2010) Auxin carriers localization drives auxin accumulation in plant cells infected by Frankia in Casuarina glauca actinorhizal nodules. Plant Physiol 154:1372–1380

    PubMed  CrossRef  CAS  Google Scholar 

  • Prayitno J, Rolfe BG, Mathesius U (2006) The ethylene-insensitive sickle mutant of Medicago truncatula shows altered auxin transport regulation during nodulation. Plant Physiol 142:168–180

    PubMed  CrossRef  CAS  Google Scholar 

  • Reed RC, Brady SR, Muday GK (1998) Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol 118:1369–1378

    PubMed  CrossRef  CAS  Google Scholar 

  • Reid DE, Ferguson BJ, Gresshoff PM (2011a) Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation. Mol Plant-Microbe Interact 24:606–618

    PubMed  CrossRef  CAS  Google Scholar 

  • Reid DE, Ferguson BJ, Hayashi S, Lin Y-H, Gresshoff PM (2011b) Molecular mechanisms controlling legume autoregulation of nodulation. Ann Bot 108:789–795

    PubMed  CrossRef  CAS  Google Scholar 

  • Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    CrossRef  CAS  Google Scholar 

  • Rightmyer AP, Long SR (2011) Pseudonodule formation by wild-type and symbiotic mutant Medicago truncatula in response to auxin transport inhibitors. Mol Plant-Microbe Interact 24:1372–1384

    PubMed  CrossRef  CAS  Google Scholar 

  • Ruffel S, Krouk G, Ristova D, Shashka D, Birnbaum KD, Coruzzi GM (2011) Nitrogen economics of root foraging: transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand. Proc Natl Acad Sci USA 108:18514–18529

    CrossRef  Google Scholar 

  • Sagan M, Morandi D, Tarenghi E, Duc G (1995) Selection of nodulation and mycorrhizal mutants in the model-plant Medicago truncatula (Gaertn) after gamma-ray mutagenesis. Plant Sci 111:63–71

    CrossRef  CAS  Google Scholar 

  • Salon C, Lepetit M, Gamas P, Jeudy C, Moreau S, Moreau D, Voisin A-S, Duc G, Bourion V, Munier-Jolain N (2009) Analysis and modeling of the integrative response of Medicago truncatula to nitrogen constraints. C R Biol 332:1022–1033

    PubMed  CrossRef  CAS  Google Scholar 

  • Schnabel E, Journet EP, de Carvalho-Niebel F, Duc G, Frugoli J (2005) The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol Biol 58:809–822

    PubMed  CrossRef  Google Scholar 

  • Schnabel E, Mukherjee A, Smith L, Kassaw T, Long S, Frugoli J (2010) The lss supernodulation mutant of Medicago truncatula reduces expression of the SUNN Gene. Plant Physiol 154:1390–1402

    PubMed  CrossRef  CAS  Google Scholar 

  • Searle IR, Men AE, Laniya TS, Buzas DM, Iturbe-Ormaetxe I, Carroll BJ, Gresshoff PM (2003) Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299:109–112

    PubMed  CrossRef  CAS  Google Scholar 

  • Streeter J (1988) Inhibition of legume nodule formation and N2 fixation by nitrate. Crit Rev Plant Sci 7:1–23

    CrossRef  CAS  Google Scholar 

  • Suzaki T, Yano K, Ito M, Umehara Y, Suganuma N, Kawaguchi M (2012) Positive and negative regulation of cortical cell division during root nodule development in Lotus japonicus is accompanied by auxin response. Development 139:3997–4006

    PubMed  CrossRef  CAS  Google Scholar 

  • Takanashi K, Sugiyama A, Yazaki K (2011) Involvement of auxin distribution in root nodule development of Lotus japonicus. Planta 234:73–81

    PubMed  CrossRef  CAS  Google Scholar 

  • Tamaki V, Mercier H (2007) Cytokinins and auxin communicate nitrogen availability as long-distance signal molecules in pineapple (Ananas comosus). J Plant Physiol 164:1543–1547

    PubMed  CrossRef  CAS  Google Scholar 

  • Tian Q, Chen F, Liu J, Zhang F, Mi G (2008) Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. J Plant Physiol 165:942–951

    PubMed  CrossRef  CAS  Google Scholar 

  • van Noorden GE, Ross JJ, Reid JB, Rolfe BG, Mathesius U (2006) Defective long-distance auxin transport regulation in the Medicago truncatula super numeric nodules mutant. Plant Physiol 140:1494–1506

    PubMed  CrossRef  Google Scholar 

  • van Noorden GE, Kerim T, Goffard N, Wiblin R, Pellerone FI, Rolfe BG, Mathesius U (2007) Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti. Plant Physiol 144:1115–1131

    PubMed  CrossRef  Google Scholar 

  • Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Gutierrez RA (2010) Nitrate-responsive miRNA393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:4477–4482

    PubMed  CrossRef  CAS  Google Scholar 

  • Walch-Liu P, Filleur S, Gan YB, Forde BG (2005) Signaling mechanisms integrating root and shoot responses to changes in the nitrogen supply. Photosynth Res 83:239–250

    PubMed  CrossRef  CAS  Google Scholar 

  • Walch-Liu P, Ivanov II, Filleur S, Gan YB, Remans T, Forde BG (2006) Nitrogen regulation of root branching. Ann Bot 97:875–881

    PubMed  CrossRef  CAS  Google Scholar 

  • White J, Prell J, James EK, Poole P (2007) Nutrient sharing between symbionts. Plant Physiol 144:604–614

    PubMed  CrossRef  CAS  Google Scholar 

  • Wightman F, Schneider EA, Thimann KV (1980) Hormonal factors controlling the initiation and development of lateral roots. II. Effects of exogenous growth factors on lateral root formation in pea roots. Physiol Plant 49:304–314

    CrossRef  CAS  Google Scholar 

  • Wopereis J, Pajuelo E, Dazzo FB, Jiang QY, Gresshoff PM, de Bruijn FJ, Stougaard J, Szczyglowski K (2000) Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. Plant J 23:97–114

    PubMed  CrossRef  CAS  Google Scholar 

  • Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409

    PubMed  CrossRef  CAS  Google Scholar 

  • Zhang H, Jennings A, Barlow PW, Forde BG (1999) Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci USA 96:6529–6534

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Australian Research Council for funding through an ARC discovery grant (DP120102970) and a Future Fellowship to UM (FT100100669).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Mathesius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Noorden, G.E., Mathesius, U. (2013). Auxin as Long-Distance Signal Controlling Root Architecture in Response to Nitrogen. In: Baluška, F. (eds) Long-Distance Systemic Signaling and Communication in Plants. Signaling and Communication in Plants, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36470-9_10

Download citation