Skip to main content

Timing Interactions in Social Simulations: The Voter Model

  • Chapter
  • First Online:
Temporal Networks

Abstract

The recent availability of huge high resolution datasets on human activities has revealed the heavy-tailed nature of the interevent time distributions. In social simulations of interacting agents the standard approach has been to use Poisson processes to update the state of the agents, which gives rise to very homogeneous activity patterns with a well defined characteristic interevent time. As a paradigmatic opinion model we investigate the voter model and review the standard update rules and propose two new update rules which are able to account for heterogeneous activity patterns. For the new update rules each node gets updated with a probability that depends on the time since the last event of the node, where an event can be an update attempt (exogenous update) or a change of state (endogenous update). We find that both update rules can give rise to power law interevent time distributions, although the endogenous one more robustly. Apart from that for the exogenous update rule and the standard update rules the voter model does not reach consensus in the infinite size limit, while for the endogenous update there exist a coarsening process that drives the system toward consensus configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    S(t) is the probability of being in an active configuration at simulation time t. Then the probability of reaching an absorbing state at time t is\(\frac{d} {\mathit{dt}}(1 - S(t)) = -\frac{d} {\mathit{dt}}S(t)\). The average time to reach consensus is then\(\langle T\rangle = -\int _{0}^{\infty }(t \frac{d} {\mathit{dt}}S(t))\mathit{dt}\) and, integrating by parts one finds that ⟨T⟩ =  0 S(t).

  2. 2.

    In the remainder we will refer to the complementary cumulative distribution just as cumulative distribution.

References

  1. Castellano, C., Fortunato, S., Loreto, V.: Statistical Physics of social dynamics. Rev. Mod. Phys. 81, 591 (2009)

    Article  ADS  Google Scholar 

  2. Clifford, P., Sudbury, A.: A model for spatial conflict. Biometrika 60(3), 581 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Holley, R., Liggett, T.M.: Ergodic theorems for weakly interacting infinite systems and the voter model. Ann. Prob. 3(4), 643 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. San Miguel, M., Eguíluz, V.M., Toral, R., Klemm, K.: Binary and multivariate stochastic models of consensus formation. Comp. Sci. Eng. 7, 67 (2005)

    Google Scholar 

  5. Granovetter, M.: Thresholds models of collective behavior. Am. J. Soc. 83, 1420 (1978)

    Article  Google Scholar 

  6. Watts, D.: A simple model of global cascades on random networks. Proc. Natl. Acad. Sci. USA 99, 5766 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Centola, D., Eguíluz, V.M., Macy, M.W.: Cascade dynamics of complex propagation. Phys. A 374, 449 (2007)

    Article  Google Scholar 

  8. Zimmerman, M., Eguíluz, V.M., San Miguel, M.: Economics with heterogeneous interacting agents. Lect. Notes Econ. Math. Syst. 503, 73 (2001)

    Article  Google Scholar 

  9. Zimmerman, M., Eguíluz, V.M., San Miguel, M.: Coevolution of dynamical states and interactions in dynamic networks. Phys. Rev. E. 69, 065102 (2004)

    Article  ADS  Google Scholar 

  10. Vazquez, F., Eguíluz, V.M., San Miguel, M.: Generic absorbing transition in coevolution dynamics. Phys. Rev. Lett. 100, 108702 (2008)

    Article  ADS  Google Scholar 

  11. Gross, T., Blasius, B.: Cascade dynamics of complex propagation. J. R. Soc. Interface 5, 259 (2008)

    Article  Google Scholar 

  12. Vazquez, F., González-Avella, J.C., Eguíluz, V.M., San Miguel, M.: Time-scale competition leading to fragmentation and recombination transitions in the coevolution of network and states. Phys. Rev. E 76, 046120 (2007)

    Article  ADS  Google Scholar 

  13. Malmgren, R.D., Stouffer, D.B., Campanharo, A.S.L.O., Amaral, L.A.N.: On universality in human correspondence activity. Sci. 325, 1696 (2009)

    Article  ADS  Google Scholar 

  14. Gama Oliveira, J., Barabási, A.-L.: Darwin and Einstein correspondence patterns. Nature 437, 1251 (2005)

    Article  ADS  Google Scholar 

  15. Eckmann, J.-P., Moses, E., Sergi, D.: Entropy dialogues creates coherent structures in e-mail traffic. Science 325, 1696 (2009)

    Article  Google Scholar 

  16. Iribarren, J.L., Moro, E.: Impact of human activity patterns on the dynamics of information diffusion. Phys. Rev. Lett. 103, 038702 (2009)

    Article  ADS  Google Scholar 

  17. Vázquez, A., Rácz, B., Lukács, A., Barabási, A.-L.: Impact of non-poissonian activity patterns on spreading processes. Phys. Rev. Lett. 98, 158702 (2007)

    Article  ADS  Google Scholar 

  18. Karsai, M., Kivelä, M., Pan, R.K., Kaski, K., Kertész, J., Barabási, A.L., Saramäki, J.: Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83, 025102 (2011)

    Article  ADS  Google Scholar 

  19. Min, B., Goh, K.I., Vazquez, A.: Spreading dynamics following bursty human activity patterns. Phys. Rev. E 83, 036102 (2011)

    Article  ADS  Google Scholar 

  20. Malmgren, R.D., Stouffer, D.B., Motter, A.E., Amaral, L.A.N.: A poissonian explanation for heavy tails in e-mail communication. Proc. Natl. Acad. Sci. USA 105, 18153 (2008)

    Article  ADS  Google Scholar 

  21. Barabási, A.-L.: The origin of bursts and heavy tails in human dynamics. Nature 435, 207 (2005)

    Article  ADS  Google Scholar 

  22. Vázquez, A., Gama Oliveira, J., Dezsö, Z., Goh, K.-I., Kondor, I., Barabási, A.-L.: Modeling bursts and heavy tails in human dynamics. Phys. Rev. E 73, 036127 (2006)

    Article  ADS  Google Scholar 

  23. Fernández-Gracia, J., Eguíluz, V.M., San Miguel, M.: Update rules and interevent time distributions: slow ordering versus no ordering in the voter model. Phys. Rev. E 84, 015103 (2011)

    Article  ADS  Google Scholar 

  24. Stark, H.-U., Tessone, C.J., Schweitzer, F.: Decelerating microdynamics can accelerate macrodynamics in the voter model. Phys. Rev. Lett. 101, 018701 (2008)

    Article  ADS  Google Scholar 

  25. Baxter, G.J.: J. Stat. Mech.: A voter model with time dependent flip rates. Theor. Exp. 2011, P09005 (2011)

    Google Scholar 

  26. Takaguchi, T., Masuda, N.: Voter model with non-Poissonian interevent intervals. Phys. Rev. E 84, 036115 (2011)

    Article  ADS  Google Scholar 

  27. Suchecki, K., Eguíluz, V.M., San Miguel, M.: Conservation laws for the voter model in complex networks. Europhys. Lett. J. B 69, 228 (2005)

    Article  ADS  Google Scholar 

  28. Klemm, K., Serrano, M.A., Eguíluz, V.M., San Miguel, M.: A measure of individual role in collective dynamics. Sci. Rep. 2, 292 (2012)

    Article  ADS  Google Scholar 

  29. Vázquez, F., Eguíluz, V.M.: Analytical solution of the voter model on uncorrelated networks. New J. Phys. 10, 063011 (2008)

    Article  Google Scholar 

  30. Sood, V., Redner, S.: Voter model on heterogeneous graphs. Phys. Rev. Lett. 94, 178701 (2005)

    Article  ADS  Google Scholar 

  31. Castelló, X., Toivonen, R., Eguíluz, V.M., Saramäki, J., Kaski, K., San Miguel, M.: Anomalous lifetime distributions and topological traps in ordering dynamics. Europhys. Lett. 79, 66006 (2007)

    Article  ADS  Google Scholar 

  32. Toivonen, R., Castelló, X., Eguíluz, V.M., Saramäki, J., Kaski, K., San Miguel, M.: Broad lifetime distributions for ordering dynamics in complex networks. Phys. Rev. E 79, 016109 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the MINECO (Spain) and FEDER (EU) through projects FISICOS (FIS2007-60327) and MODASS (FIS2011-24785). JFG acknowledges support from the Government of the Balearic Islands through the Conselleria d’Educaci, Cultura i Universitats and the ESF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor M. Eguíluz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fernández-Gracia, J., Eguíluz, V.M., Miguel, M.S. (2013). Timing Interactions in Social Simulations: The Voter Model. In: Holme, P., Saramäki, J. (eds) Temporal Networks. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36461-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36461-7_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36460-0

  • Online ISBN: 978-3-642-36461-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics