Social Insects: A Model System for Network Dynamics

  • Daniel Charbonneau
  • Benjamin Blonder
  • Anna Dornhaus
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

Social insect colonies (ants, bees, wasps, and termites) show sophisticated collective problem-solving in the face of variable constraints. Individuals exchange information and materials such as food. The resulting network structure and dynamics can inform us about the mechanisms by which the insects achieve particular collective behaviors and these can be transposed to man-made and social networks. We discuss how network analysis can answer important questions about social insects, such as how effective task allocation or information flow is realized. We put forward the idea that network analysis methods are under-utilized in social insect research, and that they can provide novel ways to view the complexity of collective behavior, particularly if network dynamics are taken into account. To illustrate this, we present an example of network tasks performed by ant workers, linked by instances of workers switching from one task to another. We show how temporal network analysis can propose and test new hypotheses on mechanisms of task allocation, and how adding temporal elements to static networks can drastically change results. We discuss the benefits of using social insects as models for complex systems in general. There are multiple opportunities emergent technologies and analysis methods in facilitating research on social insect network. The potential for interdisciplinary work could significantly advance diverse fields such as behavioral ecology, computer sciences, and engineering.

References

  1. 1.
    Alarcón, R., Waser, N.M., Ollerton, J.: Year-to-year variation in the topology of a plant–pollinator interaction network. Oikos 117, 1796–1807 (2008). doi: 10.1111/j.0030–1299.2008.16987.xCrossRefGoogle Scholar
  2. 2.
    Baker, H.G., Hurd, P.D.: Intrafloral ecology. Annu. Rev. Entomol. 13, 385–414 (1968)CrossRefGoogle Scholar
  3. 3.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Barabási, A., Bonabeau, E.: Scale-free networks. Sci. Am. 288, 60–69 (2003)Google Scholar
  5. 5.
    Bascompte, J., Jordano, P.: Plant–animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593 (2007)CrossRefGoogle Scholar
  6. 6.
    Bascompte, J., Jordano, P., Melián, C.J., Olesen, J.M.: The nested assembly of plant–animal mutualistic networks. Proc. Natl. Acad. Sci. USA 100, 9383 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Beckers, R., Deneubourg, J.L., Goss, S.: Trails and U-turns in the selection of a path by the ant Lasius niger. J. Theor. Biol. 159, 397–397 (1992a)CrossRefGoogle Scholar
  8. 8.
    Beckers, R., Deneubourg, J.L., Goss, S.: Trail laying behaviour during food recruitment in the antLasius niger (L.). Insect. Soc. 39, 59–72 (1992b)Google Scholar
  9. 9.
    Beshers, S.N., Fewell, J.H.: Models of division of labor in social insects. Annu. Rev. Entomol. 46, 413–440 (2001)CrossRefGoogle Scholar
  10. 10.
    Blonder, B., Dornhaus, A.: Time-ordered networks reveal limitations to information flow in ant colonies. PLoS ONE 6, e20298 (2011)CrossRefGoogle Scholar
  11. 11.
    Blonder, B., Dornhaus, A., Wey, T.W., et al.: Temporal dynamics and network analysis. Methods Ecol. Evol. 3, 958–972 (2012)CrossRefGoogle Scholar
  12. 12.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: from Natural to Artificial Systems. Oxford University Press, Oxford (1999)MATHGoogle Scholar
  13. 13.
    Bonabeau, E., Sobkowski, A., Theraulaz, G., Deneubourg, J.L.: Adaptive task allocation inspired by a model of division of labor in social insects. Biocomput. Emergent Comput. 36–45 (1997)Google Scholar
  14. 14.
    Brooks, R.A., Flynn, A.M.: Fast, cheap and out of control. DTIC document (1989)Google Scholar
  15. 15.
    Buffin, A., Goldman, S., Deneubourg, J.L.: Collective regulatory stock management and spatiotemporal dynamics of the food flow in ants. FASEB J. 26, 2725–2733 (2012). doi: 10.1096/fj.11–193698CrossRefGoogle Scholar
  16. 16.
    Buhl, J., Gautrais, J., Deneubourg, J.L., Theraulaz, G.: Nest excavation in ants: group size effects on the size and structure of tunneling networks. Naturwissenschaften 91, 602–606 (2004a)ADSCrossRefGoogle Scholar
  17. 17.
    Buhl, J., Gautrais, J., Louis Deneubourg, J., et al.: The growth and form of tunnelling networks in ants. J. Theor. Biol. 243, 287–298 (2006). doi: 10.1016/j.jtbi.2006.06.018CrossRefGoogle Scholar
  18. 18.
    Buhl, J., Gautrais, J., Solé, R.V., et al.: Efficiency and robustness in ant networks of galleries. Euro. Phys. J. B Condens. Matter Complex Syst. 42, 123–129 (2004b)CrossRefGoogle Scholar
  19. 19.
    Camazine, S., Deneubourg, J.L., Franks, N.R., et al.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2003)MATHGoogle Scholar
  20. 20.
    Di Caro, G., Dorigo, M.: AntNet: distributed stigmergetic control for communications networks. J. Artif. Intell. Res. 9 (1998)Google Scholar
  21. 21.
    Cassill, L.D., Tschinkel, W.R.: Regulation of diet in the fire ant, Solenopsis invicta. J. Insect Behav. 12, 307–328 (1999)CrossRefGoogle Scholar
  22. 22.
    Chapman, R.E., Bourke, A.F.G.: The influence of sociality on the conservation biology of social insects. Ecol. Lett. 4, 650–662 (2001)CrossRefGoogle Scholar
  23. 23.
    Cicirello, V.A., Smith, S.F.: Wasp-like agents for distributed factory coordination. Auton. Agent. Multi-Agent Syst. 8, 237–266 (2004)CrossRefGoogle Scholar
  24. 24.
    Dorigo, M., Gambardella, L.M., others: Ant colonies for the travelling salesman problem. BioSystems 43, 73–82 (1997)CrossRefGoogle Scholar
  25. 25.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT, Cambridge (2004)MATHCrossRefGoogle Scholar
  26. 26.
    Dornhaus, A., Holley, J.A., Franks, N.R.: Larger colonies do not have more specialized workers in the ant Temnothorax albipennis. Behav. Ecol. 20, 922–929 (2009)CrossRefGoogle Scholar
  27. 27.
    Dornhaus, A., Holley, J.A., Pook, V.G., et al.: Why do not all workers work? Colony size and workload during emigrations in the ant Temnothorax albipennis. Behav. Ecol. Sociobiol. 63, 43–51 (2008)CrossRefGoogle Scholar
  28. 28.
    Dunne, J.A.: The Network Structure of Food Webs. Ecological Networks: Linking Structure to Dynamics in Food Webs, pp. 27–86. Oxford University Press, Oxford (2006)Google Scholar
  29. 29.
    Dunne, J.A., Williams, R.J., Martinez, N.D.: Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002)CrossRefGoogle Scholar
  30. 30.
    Dupont, Y.L., Padrón, B., Olesen, J.M., Petanidou, T.: Spatio-temporal variation in the structure of pollination networks. Oikos 118, 1261–1269 (2009). doi: 10.1111/j.1600–0706.2009.17594.xCrossRefGoogle Scholar
  31. 31.
    Fewell, J.H.: Social insect networks. Science 301, 1867–1870 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    Franks, N.R., Mallon, E.B., Bray, H.E., et al.: Strategies for choosing between alternatives with different attributes: exemplified by house-hunting ants. Anim. Behav. 65, 215–223 (2003)CrossRefGoogle Scholar
  33. 33.
    Franks, N.R., Pratt, S.C., Mallon, E.B., et al.: Information flow, opinion polling and collective intelligence in house–hunting social insects. Phil. Trans. R Soc. Lond. B 357, 1567–1583 (2002). doi: 10.1098/rstb.2002.1066CrossRefGoogle Scholar
  34. 34.
    Gautrais, J., Theraulaz, G., Deneubourg, J.L., Anderson, C.: Emergent polyethism as a consequence of increased colony size in insect societies. J. Theor. Biol. 215, 363–373 (2002)CrossRefGoogle Scholar
  35. 35.
    Gordon, D.M.: Interaction Patterns and Task Allocation in Ant Colonies. Birkhäuser Verlag, Basel, Switzerland (1999)Google Scholar
  36. 36.
    Gordon, D.M.: The organization of work in social insect colonies. Nature 380, 121–124 (1996)ADSCrossRefGoogle Scholar
  37. 37.
    Gordon, D.M.: Ant encounters: Interaction Networks and Colony Behavior. Princeton University Press, Princeton (2010)Google Scholar
  38. 38.
    Greene, M.J., Gordon, D.M.: Interaction rate informs harvester ant task decisions. Behav. Ecol. 18, 451–455 (2007)CrossRefGoogle Scholar
  39. 39.
    Grimaldi, D.A., Engel, M.S.: Evolution of the Insects. Cambridge University Press, Cambridge (2005)Google Scholar
  40. 40.
    Hodges, S.A., Arnold, M.L.: Columbines: A geographically widespread species flock. Proc. Natl. Acad. Sci. USA 91, 5129 (1994)ADSCrossRefGoogle Scholar
  41. 41.
    Holden, C.: Entomologists wane as insects wax. Science 246, 754–756 (1989). doi:10.1126/science.2814497ADSCrossRefGoogle Scholar
  42. 42.
    Hölldobler, B., Wilson, E.O.: The Ants. Belknap Press of Harvard University Press, Cambridge (1990)Google Scholar
  43. 43.
    Ings, T.C., Montoya, J.M., Bascompte, J., et al.: Review: ecological networks – beyond food webs. J. Anim. Ecol. 78, 253–269 (2009). doi: 10.1111/j.1365–2656.2008.01460.xCrossRefGoogle Scholar
  44. 44.
    Jandt, J.M., Dornhaus, A.: Spatial organization and division of labour in the bumblebee Bombus impatiens. Anim. Behav. 77, 641–651 (2009)CrossRefGoogle Scholar
  45. 45.
    Jeanson, R.: Long-term dynamics in proximity networks in ants. Anim. Behav. 83, 915–923 (2012). doi: 10.1016/j.anbehav.2012.01.009CrossRefGoogle Scholar
  46. 46.
    Jeanson, R., Fewell, J.H., Gorelick, R., Bertram, S.M.: Emergence of increased division of labor as a function of group size. Behav. Ecol. Sociobiol. 62, 289–298 (2007)CrossRefGoogle Scholar
  47. 47.
    Jeong, H., Tombor, B., Albert, R., et al.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    Johnson, B.R.: Global information sampling in the honey bee. Naturwissenschaften 95, 523–530 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    Johnson, B.R.: A Self-organizing model for task allocation via frequent task quitting and random walks in the honeybee. Am. Nat. 174, 537–547 (2009)CrossRefGoogle Scholar
  50. 50.
    Karsai, I., Wenzel, J.W.: Productivity, individual-level and colony-level flexibility, and organization of work as consequences of colony size. Proc. Natl. Acad. Sci. 95, 8665 (1998)ADSCrossRefGoogle Scholar
  51. 51.
    Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton (2008)MATHGoogle Scholar
  52. 52.
    Khanin, R., Wit, E.: How scale-free are biological networks. J. Comput. Biol. 13, 810–818 (2006)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Krieger, M.J.B., Billeter, J.B., Keller, L.: Ant-like task allocation and recruitment in cooperative robots. Nature 406, 992–995 (2000)ADSCrossRefGoogle Scholar
  54. 54.
    Lanan, M.C., Dornhaus, A., Jones, E.I., et al.: The trail less traveled: individual decision-making and its effect on group behavior. PLoS ONE 7, e47976 (2012). doi: 10.1371/journal.pone.0047976ADSCrossRefGoogle Scholar
  55. 55.
    Linksvayer, T.A., Fewell, J.H., Gadau, J., Laubichler, M.D.: Developmental evolution in social insects: regulatory networks from genes to societies. J. Exp. Zool. B Mol. Dev. Evol. 318, 159–169 (2012). doi: 10.1002/jez.b.22001CrossRefGoogle Scholar
  56. 56.
    Linksvayer, T.A., Fondrk, M.K., Page, R.E.: Honeybee social regulatory networks are shaped by colony-level selection. Am. Nat. 173, E99–E107 (2009). doi: 10.1086/596527CrossRefGoogle Scholar
  57. 57.
    Lopezaraiza–Mikel, M.E., Hayes, R.B., Whalley, M.R., Memmott, J.: The impact of an alien plant on a native plant–pollinator network: an experimental approach. Ecol. Lett. 10, 539–550 (2007)Google Scholar
  58. 58.
    Lovell, J.H.: The Flower and the Bee: Plant Life and Pollination. C. Scribner’s sons, New York (1918)Google Scholar
  59. 59.
    Lumer, E.D., Faieta, B.: Diversity and adaptation in populations of clustering ants. In: From Animals to Animats. Proceedings of the 3rd International Conference on the Simulation of Adaptive Behavior, pp. 501–508 (1994)Google Scholar
  60. 60.
    Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks. Science STKE 296, 910 (2002)ADSGoogle Scholar
  61. 61.
    Memmott, J., Craze, P.G., Waser, N.M., Price, M.V.: Global warming and the disruption of plant–pollinator interactions. Ecol. Lett. 10, 710–717 (2007)CrossRefGoogle Scholar
  62. 62.
    Memmott, J., Waser, N.M., Price, M.V.: Tolerance of pollination networks to species extinctions. Proc. R. Soc. Lond. B Biol. Sci. 271, 2605–2611 (2004)CrossRefGoogle Scholar
  63. 63.
    Minter, N.J., Franks, N.R., Robson Brown, K.A.: Morphogenesis of an extended phenotype: four-dimensional ant nest architecture. J. R. Soc. Interface 9, 586–595 (2011). doi: 10.1098/rsif.2011.0377CrossRefGoogle Scholar
  64. 64.
    Moreau, M., Arrufat, P., Latil, G., Jeanson, R.: Use of radio-tagging to map spatial organization and social interactions in insects. J. Exp. Biol. 214, 17–21 (2011)CrossRefGoogle Scholar
  65. 65.
    Najjar, W., Gaudiot, J.L.: Network resilience: A measure of network fault tolerance. IEEE Trans. Comput. 39, 174–181 (1990)CrossRefGoogle Scholar
  66. 66.
    Nakano, T.: Biologically inspired network systems: a review and future prospects. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 1–14 (2011)Google Scholar
  67. 67.
    Naug, D.: Structure and resilience of the social network in an insect colony as a function of colony size. Behav. Ecol. Sociobiol. 63, 1023–1028 (2009). doi: 10.1007/s00265–009–0721-xCrossRefGoogle Scholar
  68. 68.
    Naug, D.: Structure of the social network and its influence on transmission dynamics in a honeybee colony. Behav. Ecol. Sociobiol. 62, 1719–1725 (2008)CrossRefGoogle Scholar
  69. 69.
    Naug, D., Smith, B.: Experimentally induced change in infectious period affects transmission dynamics in a social group. Proc. R. Soc. B Biol. Sci. 274, 61–65 (2007)CrossRefGoogle Scholar
  70. 70.
    Van Noort, V., Snel, B., Huynen, M.A.: The yeast coexpression network has a small-world, scale-free architecture and can be explained by a simple model. EMBO Rep. 5, 280–284 (2004)CrossRefGoogle Scholar
  71. 71.
    Olesen, J.M., Bascompte, J., Elberling, H., Jordano, P.: Temporal dynamics in a pollination network. Ecology 89, 1573–1582 (2008)CrossRefGoogle Scholar
  72. 72.
    Oster, G.F., Wilson, E.O.: Caste and Ecology in the Social Insects. Princeton University Press, Princeton (1979)Google Scholar
  73. 73.
    Otterstatter, M.C., Thomson, J.D.: Contact networks and transmission of an intestinal pathogen in bumble bee (Bombus impatiens) colonies. Oecologia 154, 411–421 (2007)CrossRefGoogle Scholar
  74. 74.
    Parunak, H.V.D.: “Go to the ant”: Engineering principles from natural multi-agent systems. Ann. Oper. Res. 75, 69–102 (1997)MATHCrossRefGoogle Scholar
  75. 75.
    Patek, S.N., Baio, J.E., Fisher, B.L., Suarez, A.V.: Multifunctionality and mechanical origins: ballistic jaw propulsion in trap-jaw ants. Proc. Natl. Acad. Sci. USA 103, 12787–12792 (2006). doi:10.1073/pnas.0604290103ADSCrossRefGoogle Scholar
  76. 76.
    Perna, A., Jost, C., Couturier, E., et al.: The structure of gallery networks in the nests of termite Cubitermes spp. revealed by X-ray tomography. Naturwissenschaften 95, 877–884 (2008a)ADSCrossRefGoogle Scholar
  77. 77.
    Perna, A., Valverde, S., Gautrais, J., et al.: Topological efficiency in three-dimensional gallery networks of termite nests. Phys. A Stat. Mech. Appl. 387, 6235–6244 (2008b). doi: 10.1016/j.physa.2008.07.019CrossRefGoogle Scholar
  78. 78.
    Petanidou, T., Kallimanis, A.S., Tzanopoulos, J., et al.: Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol. Lett. 11, 564–575 (2008). doi: 10.1111/j.1461–0248.2008.01170.xCrossRefGoogle Scholar
  79. 79.
    Pie, M.R., Rosengaus, R.B., Traniello, J.F.A.: Nest architecture, activity pattern, worker density and the dynamics of disease transmission in social insects. J. Theor. Biol. 226, 45–51 (2004). doi: 10.1016/j.jtbi.2003.08.002MathSciNetCrossRefGoogle Scholar
  80. 80.
    Pinter-Wollman, N., Wollman, R., Guetz, A., et al.: The effect of individual variation on the structure and function of interaction networks in harvester ants. J. R. Soc. Interface 8, 1562–1573 (2011). doi: 10.1098/rsif.2011.0059CrossRefGoogle Scholar
  81. 81.
    Poff, C., Nguyen, H., Kang, T., Shin, M.C.: Efficient Tracking of Ants in Long Video with GPU and Interaction (2012)Google Scholar
  82. 82.
    Powell, S., Tschinkel, W.R.: Ritualized conflict in Odontomachus brunneus and the generation of interaction-based task allocation: a new organizational mechanism in ants. Anim. Behav. 58, 965–972 (1999)CrossRefGoogle Scholar
  83. 83.
    Pratt, S.C., Sumpter, D.J.T.: A tunable algorithm for collective decision-making. PNAS 103, 15906–15910 (2006). doi: 10.1073/pnas.0604801103ADSCrossRefGoogle Scholar
  84. 84.
    Quitmeyer, A., Balch, T.: Biotrack Pack 1.5. In: Bio-Tracking. http://www.bio-tracking.org/biotrackpack/
  85. 85.
    Retana, J., Cerdá, X.: Social Organization of Cataglyphis cursor Ant Colonies (Hymenoptera, Formicidae): Inter-, and Intraspecific Comparisons. Ethology 84, 105–122 (1990). doi: 10.1111/j.1439–0310.1990.tb00788.xCrossRefGoogle Scholar
  86. 86.
    Robertson, C.: Flowers and Insects: Lists of Visitors to Four Hundred and Fifty-Three Flowers. C. Robertson. National Center for Ecological Analysis and Synthesis Interaction, Carlinville, IL (1929). Web Database: http://www.nceas.ucsb.edu/interactionweb/html/robertson\_1929.html. Keywords: Lists plant–pollinator interactions for 456
  87. 87.
    Robinson, E.J.H., Smith, F.D., Sullivan, K.M.E., Franks, N.R.: Do ants make direct comparisons? Proc. R. Soc. B (2009). doi: 10.1098/rspb.2009.0350Google Scholar
  88. 88.
    Rueppell, O., Kirkman, R.W.: Extraordinary starvation resistance in Temnothorax rugatulus (Hymenoptera, Formicidae) colonies: Demography and adaptive behavior. Insect. Soc. 52, 282–290 (2005). doi: 10.1007/s00040–005–0804–2CrossRefGoogle Scholar
  89. 89.
    Samways, M.J.: Insects in biodiversity conservation: some perspectives and directives. Biodivers. Conserv. 2, 258–282 (1993)CrossRefGoogle Scholar
  90. 90.
    Schwander, T., Rosset, H., Chapuisat, M.: Division of labour and worker size polymorphism in ant colonies: the impact of social and genetic factors. Behav. Ecol. Sociobiol. 59, 215–221 (2005)CrossRefGoogle Scholar
  91. 91.
    Seeley, T.D., Kolmes, S.A.: Age polyethism for hive duties in honey bees — illusion or reality? Ethology 87, 284–297 (1991). doi: 10.1111/j.1439–0310.1991.tb00253.xCrossRefGoogle Scholar
  92. 92.
    Sendova-Franks, A.B., Franks, N.R.: Spatial relationships within nests of the antLeptothorax unifasciatus (Latr.) and their implications for the division of labour. Anim. Behav. 50, 121–136 (1995)Google Scholar
  93. 93.
    Sendova-Franks, A.B., Hayward, R.K., Wulf, B., et al.: Emergency networking: famine relief in ant colonies. Anim. Behav. 79, 473–485 (2010)CrossRefGoogle Scholar
  94. 94.
    Sole, R.V., Montoya, M.: Complexity and fragility in ecological networks. Proc. R. Soc. Lond. B Biol. Sci. 268, 2039–2045 (2001)CrossRefGoogle Scholar
  95. 95.
    Sueur, C., Jacobs, A., Amblard, F., et al.: How can social network analysis improve the study of primate behavior? Am. J. Primatol. 73, 703–719 (2011)CrossRefGoogle Scholar
  96. 96.
    The World Conservation Union: IUCN red list of threatened species. Summary Statistics for Globally Threatened Species (2010)Google Scholar
  97. 97.
    Thomas, M.L., Elgar, M.A.: Colony size affects division of labour in the ponerine ant Rhytidoponera metallica. Naturwissenschaften 90, 88–92 (2003)ADSGoogle Scholar
  98. 98.
    Tong, A.H.Y., Lesage, G., Bader, G.D., et al.: Global mapping of the yeast genetic interaction network. Science STKE 303, 808 (2004)ADSGoogle Scholar
  99. 99.
    Waser, N.M., Chittka, L., Price, M.V., et al.: Generalization in pollination systems, and why it matters. Ecology 77, 1043–1060 (1996). doi: 10.2307/2265575CrossRefGoogle Scholar
  100. 100.
    Waters, J.S., Fewell, J.H.: Information processing in social insect networks. PLoS ONE 7, e40337 (2012). doi: 10.1371/journal.pone.0040337ADSCrossRefGoogle Scholar
  101. 101.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world”networks. Nature 393, 440–442 (1998)ADSCrossRefGoogle Scholar
  102. 102.
    Weiss, G.: Multiagent Systems a Modern Approach to Distributed Artificial Intelligence. MIT, Cambridge (1999)Google Scholar
  103. 103.
    Wey, T., Blumstein, D.T., Shen, W., Jordán, F.: Social network analysis of animal behaviour: a promising tool for the study of sociality. Anim. Behav. 75, 333–344 (2008)CrossRefGoogle Scholar
  104. 104.
    Wilson, E.O.: Ants. Bull. Am. Acad. Arts Sci. 45, 13–23 (1991)Google Scholar
  105. 105.
    Wilson-Rich, N., Spivak, M., Fefferman, N.H., Starks, P.T.: Genetic, individual, and group facilitation of disease resistance in insect societies. Annu. Rev. Entomol. 54, 405–423 (2009). doi: 10.1146/annurev.ento.53.103106.093301CrossRefGoogle Scholar
  106. 106.
    Wuchty, S., Ravasz, E., Barabási, A.L.: The architecture of biological networks. Complex Syst. Sci. Biomed. 165–181 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daniel Charbonneau
    • 1
  • Benjamin Blonder
    • 2
  • Anna Dornhaus
    • 2
  1. 1.Graduate Interdisciplinary Program in Entomology & Insect ScienceUniversity of ArizonaTucsonUSA
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonUSA

Personalised recommendations