Skip to main content

Temporal Networks of Face-to-Face Human Interactions

  • Chapter
  • First Online:
Book cover Temporal Networks

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

The ever increasing adoption of mobile technologies and ubiquitous services allows to sense human behavior at unprecedented levels of details and scale. Wearable sensors are opening up a new window on human mobility and proximity at the finest resolution of face-to-face proximity. As a consequence, empirical data describing social and behavioral networks are acquiring a longitudinal dimension that brings forth new challenges for analysis and modeling. Here we review recent work on the representation and analysis of temporal networks of face-to-face human proximity, based on large-scale datasets collected in the context of the SocioPatterns collaboration. We show that the raw behavioral data can be studied at various levels of coarse-graining, which turn out to be complementary to one another, with each level exposing different features of the underlying system. We briefly review a generative model of temporal contact networks that reproduces some statistical observables. Then, we shift our focus from surface statistical features to dynamical processes on empirical temporal networks. We discuss how simple dynamical processes can be used as probes to expose important features of the interaction patterns, such as burstiness and causal constraints. We show that simulating dynamical processes on empirical temporal networks can unveil differences between datasets that would otherwise look statistically similar. Moreover, we argue that, due to the temporal heterogeneity of human dynamics, in order to investigate the temporal properties of spreading processes it may be necessary to abandon the notion of wall-clock time in favour of an intrinsic notion of time for each individual node, defined in terms of its activity level. We conclude highlighting several open research questions raised by the nature of the data at hand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that s i t might be larger than the total time during which i has been in contact with any individual, as i could be in contact at the same time with more than one individual.

  2. 2.

    The system is in a stationary state for b 1 > 0. 5, b 0 > (2λ − 1) ∕ (3λ − 1) and λ > 0. 5, while the self-consistent solution breaks down outside of this parameter region, and non-stationary behavior with the possible formation of large (system-size) groups can be observed [63, 64].

References

  1. Wasserman, A., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  2. Padgett, J.F., Ansell, C.K.: Robust action and the rise of the Medici. Am. J. Sociol. 98, 1259–1319 (1993)

    Article  Google Scholar 

  3. Lubbers, M.J., Molina, J.L., Lerner, J., Brandes, U., Avila, J., McCarty, C.: Longitudinal analysis of personal networks. The case of argentinean migrants in Spain. Soc. Networks 32, 91–104 (2010)

    Article  Google Scholar 

  4. Lazer, D., et al.: Life in the network: the coming age of computational social science. Science 323, 721 (2009)

    Article  Google Scholar 

  5. Giles, J.: Computational social science: making the links. Nature 488, 448 (2012)

    Article  ADS  Google Scholar 

  6. Vespignani, A.: Predicting the Behavior or techno-social systems. Science 325, 425 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Chowell, G., Hyman, J.M., Eubank, S., Castillo-Chavez, C.: Scaling laws for the movement of people between locations in a large city. Phys. Rev. E 68, 066102 (2003)

    Article  ADS  Google Scholar 

  8. De Montis, A. Barthélemy, M., Chessa, A., Vespignani, A.: The structure of inter-urban traffic: a weighted network analysis. Environ. Plann. J. B 34, 905–924 (2007)

    Article  Google Scholar 

  9. Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439, 462–465 (2006)

    Article  ADS  Google Scholar 

  10. Barrat, A., Barthélemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA 101, 3747–3752 (2004)

    Article  ADS  Google Scholar 

  11. Balcan, D., Colizza, V., Gonçalves, B., Hu, H., Ramasco, J.J., Vespignani, A.: Multiscale mobility networks and the spatial spreading of infectious diseases. Proc. Natl. Acad. Sci. USA 106, 21484–21489 (2009)

    Article  ADS  Google Scholar 

  12. González, M.C., Hidalgo, C.A., Barabási, A.-L.: Understanding individual human mobility patterns. Nature 453, 779–782 (2008)

    Article  ADS  Google Scholar 

  13. Song, C., Qu, Z., Blumm, N., Barabási, A.-L.: Limits of Predictability in Human Mobility. Science 327, 1018–1021 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Onnela, J.-P., Saramäki, J., Hyvonen, J., Szabó, G., Argollo de Menezes, M., Kaski, K., Barabási, A.-L., Kertész, J.: Analysis of a large-scale weighted network of one-to-one human communication. New J. Phys. 9, 179 (2007)

    Google Scholar 

  15. Eckmann, J.-P., Moses, E., Sergi, D.: Entropy of dialogues creates coherent structures in e-mail traffic. Proc. Natl. Acad. Sci. USA 101, 14333–14337 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Kossinets, G., Watts, D.: Empirical analysis of an evolving social network. Science 311, 88–90 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Golder, S., Wilkinson, D., Huberman, B.: Rhythms of social interaction: messaging within a massive online network. In: Communities and Technologies 2007: Proceedings of the Third Communities and Technologies Conference, Michigan State University, 2007

    Google Scholar 

  18. Leskovec, J., Horvitz, E.: Planetary-scale views on a large instant-messaging network. In: Proceeding of the 17th International Conference on World Wide Web, pp. 915–924. ACM, New York (2008)

    Google Scholar 

  19. Rybski, D., Buldyrev, S.V., Havlin, S., Liljeros, F., Makse, H.A.: Scaling laws of human interaction activity. Proc. Natl. Acad. Sci. USA 106, 12640–12645 (2009)

    Article  ADS  Google Scholar 

  20. Malmgren, R.D., Stouffer, D.B., Campanharo, A.S.L.O., Nunes Amaral, L.A.: On Universality in Human Correspondence Activity. Science 325, 1696–1700 (2009)

    Article  ADS  Google Scholar 

  21. Cattuto, C., Van den Broeck, W., Barrat, A., Colizza, V., Pinton, J.-F., Vespignani, A.: Dynamics of person-to-person interactions from distributed RFID sensor networks. PLoS ONE 5(7), e11596 (2010)

    Article  ADS  Google Scholar 

  22. Alani, H., Szomsor, M., Cattuto, C., Van den Broeck, W., Correndo, G., Barrat, A.: Live social semantics. In: 8th International Semantic Web Conference ISWC2009. Lecture Notes in Computer Science, vol. 5823, pp. 698–714. Springer, Berlin (2009). http://dx.doi.org/10.1007/978-3-642-04930-9_44

  23. Van den Broeck, W., Cattuto, C., Barrat, A., Szomsor, M., Correndo, G., Alani, H.: The live social semantics application: a platform for integrating face-to-face presence with on-line social networking. First International Workshop on Communication, Collaboration and Social Networking in Pervasive Computing Environments (PerCol 2010). In: Proceedings of the 8th Annual IEEE International Conference on Pervasive Computing and Communications, pp. 226–231, Mannheim, Germany (2010)

    Google Scholar 

  24. Salathé, M., Kazandjieva, M., Lee, J.W., Levis, P., Feldman, M.W., Jones, J.H.: A high-resolution human contact network for infectious disease transmission. Proc. Natl. Acad. Sci. (USA) 107, 22020–22025 (2010)

    Google Scholar 

  25. Special issue of Science on Complex networks and systems. Science 325, 357 (2009)

    Google Scholar 

  26. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003)

    Google Scholar 

  27. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Pastor-Satorras, R., Vespignani, A.: Evolution and Structure of the Internet: A Statistical Physics Approach. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  29. Caldarelli, G.: Scale-Free Networks. Oxford University Press, Oxford (2007)

    Book  MATH  Google Scholar 

  30. Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  31. Watts, D.: Connections: a twenty-first century science. Nature 445, 489 (2007)

    Article  ADS  Google Scholar 

  32. Holme, P., Saramäki, C.: Temporal networks. Phys. Rep. 519, 97–125 (2012)

    Article  Google Scholar 

  33. Clauset, A., Eagle, N.: Persistence and periodicity in a dynamic proximity network. In: Proceedings of the DIMACS Workshop on Computational Methods for Dynamic Interaction Networks, Piscataway (2007). Also available at http://arxiv.org/abs/1211.7343

  34. Caceres, R.S., Berger-Wolf, T., Grossman, R.: Temporal scale of processes in dynamic networks. In: 2011 IEEE 11th International Conference on Data Mining Workshops (ICDMW), pp. 925–932 (2011)

    Google Scholar 

  35. Krings, G., Karsai, M., Bernharsson, S., Blondel, V.D., Saramäki, J.: Effects of time window size and placement on the structure of aggregated networks. EPJ Data Sci. 1, 4 (2012)

    Article  Google Scholar 

  36. Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Colizza, V., Isella, L., Régis, C., Pinton, J.-F., Khanafer, N., Van den Broeck, W., Vanhems, P.: Simulation of a SEIR infectious disease model on the dynamic contact network of conference attendees. BMC Med. 9, 87 (2011)

    Article  Google Scholar 

  37. Blower, S., Go, M.H.: The importance of including dynamic social networks when modeling epidemics of airborne infections: does increasing complexity increase accuracy? BMC Med. 9, 88 (2011)

    Article  ADS  Google Scholar 

  38. Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.-F., Van den Broeck, W.: What’s in a crowd? Analysis of face-to-face behavioral networks. J. Theor. Biol. 271, 166–180 (2011)

    Google Scholar 

  39. Isella, L., Romano, M., Barrat, A., Cattuto, C., Colizza, V., Van den Broeck, W., Gesualdo, F., Pandolfi, E., Ravà, L., Rizzo, C., Tozzi, A.E.: Close encounters in a pediatric ward: measuring face-to-face proximity and mixing patterns with wearable sensors. PLoS ONE 6(2), e17144 (2011)

    Article  ADS  Google Scholar 

  40. Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Van den Broeck, W., Régis, C., Lina, B., Vanhems, P.: High-resolution measurements of face-to-face contact patterns in a primary school. PLoS ONE 6(8), e23176 (2011)

    Article  Google Scholar 

  41. http://www.sciencegallery.com/infectious. Downloaded on 1 August 2012

  42. http://www.sociopatterns.org/datasets/infectious-sociopatterns-dynamic-contact-networks/. Downloaded on 1 August 2012

  43. http://www.ht2009.org/. Downloaded on 1 August 2012

  44. http://www.sociopatterns.org/datasets/hypertext-2009-dynamic-contact-network/. Downloaded on 1 August 2012

  45. http://www.sociopatterns.org/datasets/primary-school-cumulative-networks/. Downloaded on 1 August 2012

  46. Barrat, A., Cattuto, C., Szomszor, M., Van den Broeck, W., Alani, H.: Social dynamics in conferences: analyses of data from the Live Social Semantics application. In: 9th International Semantic Web Conference (ISWC 2010), Shanghai, China, 7–11 November 2010

    Google Scholar 

  47. http://www.addith.be/projects/2010/practice-mapping/. Downloaded on 1 August 2012

  48. Barabàsi, A.-L.: The origin of bursts and heavy tails in human dynamics. Nature 435(7039), 207 (2005)

    Article  ADS  Google Scholar 

  49. Vàzquez, A., Oliveira, J.G., Dezsö, Z., Goh, K.-I., Kondor, I., Barabàsi, A.-L.: Modeling bursts and heavy tails in human dynamics. Phys. Rev. E 73, 036127 (2006)

    Article  ADS  Google Scholar 

  50. Barabási, A.-L.: Bursts: The Hidden Pattern Behind Everything We Do. Dutton Adult, New York (2010)

    Google Scholar 

  51. Read, J.M., Edmunds, W.J., Rile, S., Lessler, J., Cummings, D.A.T.: Close encounters of the 766 infectious kind: methods to measure social mixing behaviour. Epidemiol. Infect. 140, 2117–2130 (2012)

    Article  Google Scholar 

  52. Gautreau, A., Barrat, A., Barthélemy, M.: Microdynamics in stationary complex networks. Proc. Natl. Acad. Sci. USA 106, 8847 (2009)

    Article  ADS  MATH  Google Scholar 

  53. Bajardi, P., Barrat, A., Natale, F., Savini, L., Colizza, V.: Dynamical patterns of cattle trade movements. PLoS ONE 6(5), e19869 (2011)

    Article  Google Scholar 

  54. http://www.gephi.org. Downloaded on 1 August 2012

  55. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Annu. Rev. Sociol. 27, 415–444 (2001)

    Article  Google Scholar 

  56. Tantipathananandh, C., Berger-Wolf, T., Kempe, D.: A framework for community identification in dynamic social networks. In: KDD 07: Proceedings of 13th ACM SIGKDD on Knowledge discovery and data mining, pp. 717–726, New York, USA (2007)

    Google Scholar 

  57. Seifi, M., Junier, I., Rouquier, J.-B., Iskrov, S., Guillaume, J.-L.: Stable community cores in complex networks. In: Menezes, R., Evsukoff, A., González, M.C. (eds.) Complex Networks. Springer, Berlin (2013)

    Google Scholar 

  58. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86 3200–3203 (2001)

    Article  ADS  Google Scholar 

  59. Anderson, R., May, R.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1991)

    Google Scholar 

  60. Gross, T., Sayama, H. (eds.): Adaptive Networks: Theory, Models and Applications. Springer/NECSI Studies on Complexity Series. Springer, Berlin (2008)

    Google Scholar 

  61. Scherrer, A., Borgnat, P., Fleury, E., Guillaume, J.-L., Robardet, C.: Description and simulation of dynamic mobility networks. Comp. Net. 52, 2842 (2008)

    Article  MATH  Google Scholar 

  62. Hill, S.A., Braha, D.: Dynamic model of time-dependent complex networks. Phys. Rev. E 82, 046105 (2010)

    Article  ADS  Google Scholar 

  63. Stehlé, J., Barrat, A., Bianconi, G.: Dynamical and bursty interactions in social networks. Phys. Rev. E 81, 035101(R) (2010)

    Google Scholar 

  64. Zhao, K., Stehlé, J., Bianconi, G., Barrat, A.: Social network dynamics of face-to-face interactions. Phys. Rev. E 83, 056109 (2011)

    Article  ADS  Google Scholar 

  65. Nicosia, V., Tang, J., Musolesi, M., Russo, G., Mascolo, C., Latora, V.: Components in time-varying graphs. Chaos 22, 023101 (2012)

    Article  ADS  Google Scholar 

  66. Kovanen, L., Karsai, M., Kaski, K., Kertész, J., Saramäki, J.: Temporal motifs in time-dependent networks. J. Stat. Mech. P11005 (2011)

    Google Scholar 

  67. Moody, J.: The importance of relationship timing for diffusion. Soc. Forces 81, 25–56 (2002)

    Article  Google Scholar 

  68. Kossinets, G., Kleinberg, J., Watts, D.: The structure of information pathways in a social communication network. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, New York (2008)

    Google Scholar 

  69. Hui, P., Chaintreau, A., Scott, J., Gass, R., Crowcroft, J., Diot, C.: Pocket switched networks and human mobility in conference environments. In: Proceedings of the 2005 ACM SIGCOMM Workshop on Delay-Tolerant Networking, vol. 244. ACM, New York (2005)

    Google Scholar 

  70. Zhang, X., Neglia, G., Kurose, J., Towsley, D.: Performance modeling of epidemic routing. Comp. Networks 51, 2867 (2007)

    Article  MATH  Google Scholar 

  71. Boldrini, C., Conti, M., Passarella, A.: Modelling data dissemination in opportunistic networks. In: Proceedings of the Third ACM Workshop on Challenged Networks (CHANTS2008), pp. 89–96. ACM, New York (2008)

    Google Scholar 

  72. Lee, C.-H., Eunt, D.H.: Heterogeneity in contact dynamics: helpful or harmful to forwarding algorithms in DTNs? In: Proceedings of the 7th International Conference on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, pp. 72–81 (2009)

    Google Scholar 

  73. Groenevelt, R., Nain, P., Koole, G.: The message delay in mobile ad hoc networks. Perform. Eval. 62, 210 (2005)

    Article  Google Scholar 

  74. Cai, H., Eun, D.Y.: Crossing over the bounded domain: from exponential to power-law inter-meeting time in MANET. In: Proceedings of the 13th Annual ACM International Conference on Mobile Computing and Networking (MOBICOM2007), pp. 159–170 IEEE Press, Piscataway (2007)

    Google Scholar 

  75. Miklas, A.G., Gollu, K.K., Kelvin, K.W., Saroiu, S., Gummadi, K.P., De Lara, E.: Exploiting social interactions in mobile systems. In: Proceedings of the 9th International Conference on Ubiquitous Computing (UBICOMP2007), pp. 409–428. Springer, Berlin (2007)

    Google Scholar 

  76. Karvo, J., Ott, J.: Time scales and delay-tolerant routing protocols. In: Proceedings of the Third ACM Workshop on Challenged Networks (CHANTS2008), pp. 33–40 ACM, New York (2008)

    Google Scholar 

  77. Panisson, A., Barrat, A., Cattuto, C., Ruffo, G., Schifanella, R.: On the dynamics of human proximity for data diffusion in ad-hoc networks. Ad Hoc Networks 10, 1532–1543 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank G. Bianconi, V. Colizza, L. Isella, A. Machens, A. Panisson, J.-F. Pinton, M. Quaggiotto, J. Stehlé, W. Van den Broeck, A. Vespignani for many interesting discussions. We also warmly thank all the collaborators who helped make the SocioPatterns deployments possible, and in particular Bitmanufaktur and the OpenBeacon project. Finally, we are grateful to all the volunteers who participated in the deployments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Barrat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barrat, A., Cattuto, C. (2013). Temporal Networks of Face-to-Face Human Interactions. In: Holme, P., Saramäki, J. (eds) Temporal Networks. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36461-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36461-7_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36460-0

  • Online ISBN: 978-3-642-36461-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics