Advertisement

Design and Safety Analysis of a Drive-by-Wire Vehicle

  • Peter Bergmiller
Chapter

Abstract

The contribution introduces a modular and flexible experimental vehicle for investigation of novel vehicle electronics. The experimental vehicle features 4-wheel-drive, 4-wheel-steering and electric brakes. Each wheel can be actuated individually. All actuators are controlled by-wire without mechanical or hydraulic fall-back layer. To evaluate the safety of the experimental vehicle on the topmost functional layer (“vehicle layer”), a novel approach for targeted safety analysis is introduced. The approach especially aims at by-wire vehicles with a high degree of functional redundancy between different actuation units and strong integration of driving functionalities as steering or braking. For demonstration, the results of a simplified hazard analysis according to ISO 26262 for operation of the experimental vehicle in a well defined environment are presented. The results serve as a basis for safety evaluation of the vehicle using the introduced approach.

Keywords

Architecture ISO 26262 Hierarchical approach Safety analysis Flexible experimental vehicle 4-wheel-drive 4-wheel-steering Vehicle electronics Drive-by-Wire Fault tolerant / fault tolerance Redundancy Monitoring Degradation FlexRay Electro-mechanical braking system Functional architecture Functional redundancy Functional integration Hazard Controllability Severity Exposure Cut set Generalized failure states Virtual system Diagnostic coverage Failure rate Markov chain Four-wheel steering Electric drive 

References

  1. Abele, A.: Design and realization of an integrated safety concept based on an architecture model with the given example for the serial development of a powertrain control unit used in electric driven vehicle. In: Hybrid and Electric Vehicles, pp. 481–525. Braunschweig (2012)Google Scholar
  2. Abele, M.: Modellierung und Bewertung hochzuverlässiger Energiebordnetz-Architekturen für sicherheitsrelevante Verbraucher in Kraftfahrzeugen. Ph.D. thesis, Universität Kassel, Kassel (2008)Google Scholar
  3. Adachi, M., Papadopoulos, Y., Sharvia, S., Parker, D., Tohdo, T.: An approach to optimization of fault tolerant architectures using HiP-HOPS. Softw. Pract. Experience 41(11), 1303–1327 (2011)Google Scholar
  4. Anwar, S., Niu, W.: Analytical redundancy based predictive fault tolerant control of a steer-by-wire system using nonlinear observer. In: 2010 IEEE International Conference on Industrial Technology, pp. 477–482 (2010)Google Scholar
  5. Arbitmann, M., Raste, T., Lauer, P., Kelling, E., Eckert, A., Rieth, P.E.: Motion Control—Zentraler Baustein zukünftiger funktional strukturierter Domänenarchitektur im Fahrzeug. In: AUTOREG 2011, pp. 375–387. Baden-Baden (2011)Google Scholar
  6. Armbruster, M.: Eine fahrzeugübergreifende X-by-Wire Plattform zur Ausführung umfassender Fahr- und Assistenzfunktionen. Ph.D. thesis, Universität Stuttgart, München (2009)Google Scholar
  7. Armbruster, M., Zimmer, E., Lehmann, M., Reichel, R., Sieglin, E., Spiegelberg, G., Sulzmann, A.: Affordable X-By-Wire technology based on an innovative scalable E/E platform-concept. In: IEEE 63rd Vehicular Technology Conference, pp. 3016–3020. Melbourne, Australia (2009)Google Scholar
  8. Beal, C.E., Gerdes, J.C.: Experimental validation of a linear model predictive envelope controller in the presence of vehicle nonlinearities. In: 6th IFAC Symposium on Advances in Automotive Control. Munich (2010)Google Scholar
  9. Bergmiller, P., Ibele, P., Maurer, M., Gerdes, J.C.: Development tool for dynamic drive control systems. ATZelektronik worldwide 2011–03, 60–67 (2011)CrossRefGoogle Scholar
  10. Bergmiller, P., Maurer, M.: Flexible Versuchsträger als Testplattform für Antriebskonzepte in Elektrofahrzeugen. In: Schäfer, H. (ed.) 2012, Trends in der elektrischen Antriebstechnologie für Hybrid- und Elektrofahrzeuge, pp. 232–243. Expert Verlag, Renningen (2012)Google Scholar
  11. Bergmiller, P., Maurer, M., Lichte, B.: Probabilistic Fault Detection and Handling Algorithm for Testing Stability Control Systems with a Drive-By-Wire Vehicle. In 2011 IEEE International Symposium on Intelligent Control (ISIC), pp. 601–606. Denver (CO), USA (2011b)Google Scholar
  12. Bernard, M., Buckl, C., Döricht, V., Fehling, M., Fiege, L., von Grolmann, H., Ivandic, N., Janello, C., Klein, C., Kuhn, K.-J., Platzlaff, C., Riedl, B.C., Schätz, B., Stanek, C.: Abschlussbericht des vom Bundesministerium für Wirtschaft und Technologie geförderten Verbundvorhabens "eCar-IKT-Systemarchitektur für Elektromobilität". ForTISS GmbH, Garching (2010)Google Scholar
  13. Bertacchini, A., Pavan, P., Tamagnini, L., Fergnani, L.: Control of brushless motor with hybrid redundancy for force feedback in steer-by-wire applications. In: 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005, pp. 1407–1412. Raleigh, USA (2005)Google Scholar
  14. Blanc, S., Bonastre, A., Gil, P.: Dependability assessment of by-wire control systems using fault injection. J. Syst. Archit. 55(2), 102–113 (2009)CrossRefGoogle Scholar
  15. Carsten, O.M.J., Nilsson, L.: Safety assessment of driver assistance systems. Eur. J. Transp. Infrastruct. Res. 1(3), 225–243 (2001)Google Scholar
  16. Collins: Collins English Dictionary 30th Anniversary Edition, 10th edn. William Collins Sons & Co. Ltd, London (2010)Google Scholar
  17. Collinson, R.: Fly-by-wire. Comput. Control Eng. J. 10(4), 141 (1999)CrossRefGoogle Scholar
  18. Cornelsen, K., Jänsch, D., Gerson, S., Nietschke, W., Maurer, M., Canders, W. R., Schumacher, W., Meyer, H.: InDrive Simulator—Innovative Tool for Simulating and Designing Complex Drive Structures in Real Operation. In: Hybrid and Electric Vehicles, pp. 166–186. Braunschweig (2011)Google Scholar
  19. Dilger, E., Karrelmeyer, R., Straube, B.: Fault tolerant mechatronics [automotive applications]. In: 10th IEEE International On-Line Testing Symposium, pp. 214–218. IEEE Computer Society (2004)Google Scholar
  20. Dominguez-garcia, A.D., Kassakian, J.G., Schindall, J.E.: A Backup System for Automotive Steer-by-Wire, Actuated by Selective Braking. In: 35th Annual IEEE Power Electronics Specialists Conference, pp. 383–388. Aachen (2004)Google Scholar
  21. Euchler, M., Bonitz, T., Mitte, D., Geyer, M.: Bewertung der Fahrsicherheit eines Elektrofahrzeugs bei stationärer Kreisfahrt. ATZ - Automobiltechnische Zeitschrift 2010–03, 206–213 (2010)Google Scholar
  22. Freitag, G., Kuhn, K.-J.: Hochintegrierter Antrieb: Radnabenantrieb ohne Reibbremse. In: Schäfer, H. (ed.) Trends in der elektrischen Antriebstechnologie für Hybrid- und Elektrofahrzeuge, pp. 73–83. Expert Verlag, Renningen (2012)Google Scholar
  23. Gadda, C.D., Laws, S.M., Gerdes, J.C.: Generating diagnostic residuals for steer-by-wire vehicles. IEEE Trans. Control Syst. Technol. 15(3), 529–540 (2007)CrossRefGoogle Scholar
  24. Gertsbakh, I.: Reliability Theory With Applications to Preventive Maintenance. Springer, Berlin (2000)Google Scholar
  25. Goldschmidt, D.: Entwicklung eines fahrdynamischen Stabilitätsprogramms für ein Drive-by-Wire-Versuchsfahrzeug. Diplomarbeit, TU Braunschweig (2012)Google Scholar
  26. Hammerschall, U.: Flexible Methodenintegration in anpassbare Vorgehensmodelle. Technische Universität München, Dissertation (2008)Google Scholar
  27. Hasan, M.S., Anwar, S.: Sliding mode observer based predictive fault diagnosis of a steer-by-wire system. In: Proceedings of the 17th International Federation of Automatic Control World Congress, pp. 8534–8539. Seoul, Korea (2008)Google Scholar
  28. Hayama, R., Higashi, M., Kawahara, S., Nakano, S., Kumamoto, H.: Fault tolerant architecture of yaw moment management with steer-by-wire, active braking and driving-torque distribution integrated control. SAE Automotive Electronics Series, 2008–01-01 (2008)Google Scholar
  29. He, L., Zong, C., Wang, C.: A steering-by-wire fault-tolerance control strategy based on multi-dimension gauss hidden Markov model. In: International Conference on Intelligent Control and Information Processing, pp. 227–230. Dalian, China (2010)Google Scholar
  30. Heiner, G., Thurner, T.: Time-triggered architecture for safety-related distributed real-time systems in transportation systems. In: Symposium, Twenty-Eighth Annual International symposium on Fault-Tolerant Computing, pp. 402–432. IEEE Computer Society, Washington, DC (1998)Google Scholar
  31. Herath, I., Roberts, C., Arvanitis, T.N., Bold, A.: Satisfying design constraints for automotive safety-critical systems. SAE Automotive Electronics Series, 2007–01-14 (2007)Google Scholar
  32. Isermann, R., Beck, M.: Modellbasierte Methoden zur Erhöhung der Verfügbarkeit und Sicherheit von Fahrwerkkomponenten. AUTOREG 2011, pp. 679–690 (2011)Google Scholar
  33. Isermann, R., Schwarz, R., Stölzl, S.: Fault-tolerant drive-by-wire systems. IEEE Control Syst. Mag. 22(5), 64–81 (2002)CrossRefGoogle Scholar
  34. Johannessen, P.: SIRIUS, : Technical Report 01. Department of Computer Engineering Chalmers University of Technology. Göteborg, Sweden (2001)Google Scholar
  35. Johannessen, P., Ahlström, K., Torin, J.: Conceptual design of distributed by-wire systems. SAE Automotive Electronics Series, 2002–01-02 (2002)Google Scholar
  36. Johannessen, P., Törner, F., Torin, J.: Actuator based hazard analysis for safety critical systems. In: Computer Safely Reliability Security, vol. 3219, pp. 130–141 (2004)Google Scholar
  37. Johannessen, P., Törner, F., Torin, J.: Experiences from model based development of drive-by-wire control systems. In: Kleinjohann, B., Gao, G.R., Kopetz, H., Kleinjohann, L., Rettberg, A. (eds.) Design Methods and Applications for Distributed Embedded Systems, pp. 103–112. Springer, Boston (2004)Google Scholar
  38. Kelling, N.A., Heck, W.: The BRAKE project—centralized versus distributed redundancy for brake-by-wire systems. SAE Automotive Electronics Series, 2002–01-02 (2002)Google Scholar
  39. Kim, M.H., Lee, S., Lee, K.C.: Kalman predictive redundancy system for fault tolerance of safety-critical systems. IEEE Trans. Industr. Inf. 6(1), 46–53 (2010)CrossRefGoogle Scholar
  40. Koehn, P., Eckrich, M., Smakman, H., Schaffert, A.: Integrated chassis management : introduction into BMW’s approach to ICM. SAE Technical Paper Series 1(1219), (2006)Google Scholar
  41. Köhler, R., Broy, J.: Markov-Ketten und Autokorrelation in der Sprach- und Textanalyse. In: Köhler, R., Broy, J. (ed.) Glottometrika 5 Bochum (1983)Google Scholar
  42. Legler, H., Gehrke, B., Krawczyk, O., Schasse, U., Rammer, C., Leheyda, N., Sofka, W.: Die Bedeutung der Automobilindustrie für die deutsche Volkswirtschaft im europäischen Kontext (2009)Google Scholar
  43. Lieberam, J.: Entwicklung eines Softwaresystems zur Zustandserfassung und -regelung im Kraftfahrzeug. Diplomarbeit, TU Braunschweig (2011)Google Scholar
  44. Löw, P., Pabst, R., Petry, E.: Funktionale Sicherheit in der Praxis, 1st edn. Heidelberg: dpunkt.verlag GmbH (2010)Google Scholar
  45. Mahmud, N., Papadopoulos, Y., Walker, M.: A translation of state machines to temporal fault trees. In: 2010 International Conference on Dependable Systems and Networks Workshops, pp. 45–51. Chicago, USA (2010)Google Scholar
  46. Maier, M.W., Rechtin, E.: The Art of Systems Architecting, 3rd edn. CRC Press Taylor & Francis Group, Boca Raton (2009)Google Scholar
  47. Masak, D.: Der Architekturreview. Springer, Berlin (2010)Google Scholar
  48. Maurer, M.: Flexible Automatisierung von Straßenfahrzeugen mit Rechnersehen. Dissertation, Universität der Bundeswehr München, Düsseldorf (2000)Google Scholar
  49. Maurer, M.: Automotive systems engineering—a personal perspective. In: Maurer, M., Winner, H. (eds.) Automotive Systems Engineering. Springer, Heidelberg (2013)Google Scholar
  50. McLaughlin, S.B.: Analytic assessment of collision avoidance systems and driver dynamic performance in rear-end crashes and near-crashes. Ph.D. thesis, Virginia Polytechnic Institute and State University, USA (2007)Google Scholar
  51. Mehmood, A., Easa, S.M.: Modeling reaction time in car-following behaviour based on human factors. Int. J. Appl. Sci. Eng. Techn. 5(14), 93–101 (2009)Google Scholar
  52. Miller, P.: A Prototype distributed architecture for safety critical automotive systems. SAE Automotive Electronics Series, 2007–01-16 (2007)Google Scholar
  53. Mishra, P.K., Naik, S.M.: Distributed control system development for flexray-based systems. SAE Automotive Electronics Series, 2005–01-12 (2005)Google Scholar
  54. Mitzlaff, M., Lang, M., Kapitza, R., Schröder-Preikschat, W.: A membership service for a distributed, embedded system based on a time-triggered flexray network. In: 2010 European Dependable Computing Conference, pp. 155–162. Valencia, Spain (2010)Google Scholar
  55. Motruk, B., Diemer, J., Ernst, R., Buchty, R., Berekovic, M.: IDAMC : A many-core platform with run-time monitoring for mixed-criticality. In: 14th International High Assurance Systems Engineering Symposium Omaha, USA (2012)Google Scholar
  56. Muenchhof, M., Beck, M., Isermann, R.: Fault-tolerant actuators and drives—structures, fault detection principles and applications. Ann. Rev. Control 33(2), 136–148 (2009)CrossRefGoogle Scholar
  57. Müller, K., Steinbach, T., Korf, F., Schmidt, T.C.: A real-time ethernet prototype platform for automotive applications. In: 2011 IEEE International Conference on Consumer Electronics -Berlin (ICCE-Berlin), pp. 221–225. Berlin (2011)Google Scholar
  58. Neudörfer, A.: Konstruieren sicherheitsgerechter Produkte. Springer, Heidelberg (2011)Google Scholar
  59. Palin, R., Ward, D., Habli, I., Rivett, R.: ISO 26262 safety cases: compliance and assurance. In: 6th IET International Conference on System Safety, pp. 1–6. Birmingham, UK (2011)Google Scholar
  60. Papadopoulos, Y., McDermid, J., Sasse, R., Heiner, G.: Analysis and synthesis of the behaviour of complex programmable electronic systems in conditions of failure. Reliab. Eng. Syst. Saf. 71(3), 229–247 (2001)CrossRefGoogle Scholar
  61. Park, T.-j., Han, C.-s., Lee, S.-h.: Development of the electronic control unit for the rack-actuating steer-by-wire using the hardware-in-the-loop simulation system. Mechatronics 15(8), 899–918 (2005)Google Scholar
  62. Pfeffer, P., Harrer, M.: Lenkungshandbuch. Wiesbaden: Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH (2011)Google Scholar
  63. Philipps, J.: Kontrolle ist gut, Misstrauen ist besser: Funktionale Sicherheit für integrierte Softwarefunktionen. In: Schäfer, H. (ed.) Trends in der elektrischen Antriebstechnologie für Hybrid- und Elektrofahrzeuge, pp. 129–140. Expert Verlag, Renningen (2012)Google Scholar
  64. Pimentel, J.: Safety-reliability of distributed embedded system fault tolerant units. In: IECON’03. 29th Annual Conference of the IEEE Industrial Electronics Society, pp. 945–950. Roanoke, USA (2003)Google Scholar
  65. Piyabongkarn, D., Lew, J.Y., Rajamani, R., Grogg, J.A., Yuan, Q.: On the use of torque-biasing systems for electronic stability control: limitations and possibilities. IEEE Trans. Control Syst. Technol. 15(3), 581–589 (2007)CrossRefGoogle Scholar
  66. Pruckner, A., Stroph, R., Pfeffer, P.: Drive-By-Wire. In: Eskandarian, A. (ed.) Handbook of Intelligent Vehicles, pp. 235–282. Springer, London (2012)Google Scholar
  67. Rausand, M., Hoyland, A.: System reliability theory—models, statistical methods and applications. Wiley, Hoboken (2009)Google Scholar
  68. Rehage, D., Carl, U.B., Vahl, A.: Redundancy management of fault tolerant aircraft system architectures—reliability synthesis and analysis of degraded system states. Aerosp. Sci. Technol. 9(4), 337–347 (2005)CrossRefGoogle Scholar
  69. Reichel, R., Armbruster, M.: X-by-Wire Plattform—Konzept und Auslegung. at—Automatisierungstechnik 59(9), 583–596 (2011)Google Scholar
  70. Reif, K.: Automobilelektronik, Eine Einführung für Ingenieure, 3rd edn. Wiesbaden: Vieweg+Teubner GWV Fachverlage GmbH (2009)Google Scholar
  71. Reinold, P., Nachtigal, V., Trächtler, A.: An advanced electric vehicle for development and test of new vehicle-dynamics control strategies. In: 6th IFAC Symposium Advances in Automotive Control. Munich (2010)Google Scholar
  72. Richter, D., Köhnen, A.: Sicherheitsziele für zukünftige Elektro-Fahrzeuge: Sicherheitsarchitektur für den elektrischen Antrieb basierend auf den Anforderungen der ISO 26262. In: Schäfer, H. (ed.) Trends in der elektrischen Antriebstechnologie für Hybrid- und Elektrofahrzeuge, pp. 95–100. Expert Verlag, Renningen (2012)Google Scholar
  73. Rieth, P.E.: Das mechatronische Fahrwerk der Zukunft. In H. Winner, S. Hakuli, & G. Wolf (eds., 2012), Handbuch Fahrerassistenzsysteme, pp. 626–631. Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH, Wiesbaden (2012)Google Scholar
  74. Rohe, M.: Entwicklung der Gesamtfahrzeugstrategie eines E-Fahrzeugprototyps mit Torque Vectoring. In: Schäfer, H. (ed.), Trends in der elektrischen Antriebstechnologie für Hybrid- und Elektrofahrzeuge, pp. 101–111. Expert Verlag, Renningen (2012)Google Scholar
  75. Sakurai, K., Matsubara, M., Hoshino, M.: Membership middleware for dependable and cost-effective X-by-wire systems. SAE Automotive Electronics Series, 2008–01-04, 1–9 (2008)Google Scholar
  76. Sangiovanni-Vincentelli, A.: Quo Vadis, SLD? reasoning about the trends and challenges of system Level design. Proc. IEEE 95(3), 467–506 (2007)CrossRefGoogle Scholar
  77. Schäuffele, J., Zurawka, T.: Automotive Software Engineering—Grundlagen, Prozesse, Methoden und Werkzeuge. Friedr. Vieweg & Sohn Verlag/GWV Fachverlage GmbH, Wiesbaden (2004)Google Scholar
  78. Schroer, R.: Flight control goes digital [Part Two, NASA at 50]. IEEE Aerosp. Electron. Syst. Mag. Part Two 23(10), 23–28 (2008)CrossRefGoogle Scholar
  79. Schwall, M.L., Gerdes, J.C.: A probabilistic approach to residual processing for vehicle fault detection. In: Proceedings of the 2002 American Control Conference, vol. 3, pp. 2552–2557 (2002)Google Scholar
  80. Siedersberger, K.-H.: Komponenten zur automatischen Fahrzeugführung in sehenden (semi-), autonomen Fahrzeugen. Dissertation, Universität der Bundeswehr München (2003)Google Scholar
  81. Sieglin, E.: Beitrag zur Energieversorgung eines innovativen Drive-by-wire-Fahrzeugkonzepts. Dissertation, Technische Universität Dresden, Renningen (2009)Google Scholar
  82. Sinha, P.: Architectural design and reliability analysis of a fail-operational brake-by-wire system from ISO 26262 perspectives. Reliab. Eng. Syst. Saf. 96(10), 1349–1359 (2011)CrossRefGoogle Scholar
  83. Smakman, H., Köhn, I.P., Vieler, D.H.: Integrated Chassis Management—ein Ansatz zur Strukturierung der Fahrdynamikregelsysteme. In: 17. Aachener Kolloquium Fahrzeug- und Motorentechnik, pp. 1–13 (2008)Google Scholar
  84. Starke, G.: Effektive Software-Architekturen. Carl Hanser Verlag, Munich (2008)Google Scholar
  85. Sundar, M., Plunkett, D.: Brake-by-wire, motivation and engineering—GM sequel. SAE Automotive Electronics Series, 2006–01-31 (2006)Google Scholar
  86. Tkachev, O.A.: Application of Markov chains for the reliability analysis of systems with a complex structure. Cybern. Syst. Anal. 19(5), 96–101 (1983)Google Scholar
  87. Töpler, S.: Entwicklung eines Abgleichreglers für die Fahrzeug Längs- und Querdynamik. Diplomarbeit, TU Braunschweig (2010)Google Scholar
  88. Touloupis, E., Flint, J.A., Chouliaras, V.A., Ward, D.D.: A fault-tolerant processor core architecture for safety-critical automotive applications. SAE Automotive Electronics Series, 2005–01-03 (2005)Google Scholar
  89. Trächtler, A., Niewels, F. Integrierte Querdynamikregelung mit ESP, AFS und aktiven Fahrwerksystemen. In: Isermann, R. (ed.) Fahrdynamik-Regelung, pp. 237–251. Friedr. Vieweg & Sohn Verlag | GWV Fachverlage GmbH, Wiesbaden (2006)Google Scholar
  90. Tucci-Piergiovanni, S., Mraidha, C., Wozniak, E., Lanusse, A., Gerard, S.: A UML model-based approach for replication assessment of AUTOSAR safety-critical applications. In: IEEE 10th International Conference on Trust, Security and Privacy in Computing and Communications, pp. 1176–1187. Changsha, China (2011)Google Scholar
  91. Verma, A.K., Ajit, S.: Reliability and Safety Engineering. Springer, London (2010)Google Scholar
  92. von Vietinghoff, A.: Nichtlineare Regelung von Kraftfahrzeugen in querdynamisch kritischen Fahrsituationen. Dissertation, Universität Karlsruhe (2008)Google Scholar
  93. Walker, M., Papadopoulos, Y.: Qualitative temporal analysis: towards a full implementation of the fault tree handbook. Control Eng. Pract. 17(10), 1115–1125 (2009)CrossRefGoogle Scholar
  94. Waraus, D.: Steer-by-wire system based on flexray protocol. In: Applied Electronics, pp. 269–272. Czech Republic, Pilsen (2009)Google Scholar
  95. Wilwert, C., Navet, N., Song, Y.Q., Simonot-Lion, F.: Design of automotive X-by-wire systems. In: Zurawski, R. (ed.) The Industrial Communication Technology Handbook, pp. (29–1)–(29–34). CRC Press, Boca Raton (2005)Google Scholar
  96. X-by-Wire Project (1998). Brite-EuRam 111 Program. X-By-Wire—safety related fault tolerant systems in vehicles, final reportGoogle Scholar
  97. Zhen, B., Altemare, C., Anwar, S.: Fault tolerant steer-by-wire road wheel control system. In: Proceedings of the 2005 American Control Conference, pp. 1619–1624. Portland, USA (2005)Google Scholar
  98. Zuo, G., Kumamoto, H., Nishihara, O., Hayama, R., Nakano, S.: Quantitative reliability analysis of different design alternatives for steer-by-wire system. Reliab. Eng. Syst. Saf. 89(3), 241–247 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Control EngineeringTechnische Universität BranuschweigBraunschweigGermany

Personalised recommendations