System Architectures for Automated Vehicle Guidance Concepts

  • Felix Lotz


Vehicle automation features are becoming more and more important in the field of advanced driver assistance systems in order to increase the vehicle’s safety, comfort and economy. However, a possible risk involved with this development is to simply add vehicle automation functionalities to already existing electronic architectures, leading to an overload of human-machine interfaces, intransparent system borders and a constantly increasing overall system complexity. To overcome this driver-assistance dilemma, the research project PRORETA 3 aims to develop an integrated assistance approach by combining a virtual “Safety Corridor” function for accident prevention with the paradigm of cooperative and semi-automated vehicle automation.

This chapter describes in detail the design process of an appropriate system architecture, which is an important factor for efficient system development. Relevant architecture requirements are presented and an overview is given of the state of technology of vehicle automation architectures within the field of advanced driver assistance systems and robotics.

The chapter closes with a proposition for an exemplary behavior-based layered architecture design for a cooperative automation concept, which, as a novel feature, incorporates the human-machine interface as an integrated element of the architecture itself. Due to its modular approach, the proposed design offers the possibility to also incorporate different levels of vehicle automation and allows a flexible span of functional coverage.


Behavior collision mitigation evaluation hierarchy human-machine interface modularity requirements analysis robotics safety corridor system vehicle guidance view V-model 



We thank Continental AG for kindly funding this work within the PRORETA 3 cooperation, which aims to develop future concepts for integrated driver assistance systems.


  1. Albus, J., Lumia, R., Fiala, J.: NASREM—The NASA/NBS Standard Reference Model for Telerobot Control System Architecture, discussion paper. National Institute of Standards and Technology, Gaithersburg (1994)Google Scholar
  2. Albus, J.: The NIST real time control system (RCS): an approach to intelligent systems research. J. Exp. Theore. Artif. Intell. 9(2–3), 157–174 (1997)CrossRefGoogle Scholar
  3. Albus, J.: 4-D/RCS reference model architecture for unmanned ground vehicles. In: IEEE International Conference on Robotics and Automation. San Francisco, USA (2000)Google Scholar
  4. Arkin, R.: Motor Schema based Navigation for a Mobile Robot. In: IEEE International Conference on Robotics and Automation. Amherst, Massachusetts (1987)Google Scholar
  5. Baker, C., Ferguson, D., Dolan, J.: Robust Mission Execution for Autonomous Urban Driving, Carnegie Mellon Research Showcase, Robotics Institute, Paper 178 (2008)Google Scholar
  6. Barrios, J., Aparicio, A., Dundar, S., Schoinas, D.: Common Database of Existing Safety Functions and Corresponding System Platforms, Report of Deliverable 6.1, Trace Project (2007). (September 17th, 2012)
  7. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-Wesley, Boston, USA (2003)Google Scholar
  8. Bauer, E., Lotz, F., Pfromm, M., Schreier, M., Abendroth, B., Cieler, S., Eckert, E., Hohm, A., Lüke, S., Rieth, P., Willert, V., Adamy, J., Bruder, R., Konigorski, U., Winner, H.: PRORETA 3: An Integrated Approach to Collision Avoidance and Vehicle Automation. In: at-Automatisierungstechnik, 12/2012. Oldenbourg Wissenschaftsverlag (2012)Google Scholar
  9. Bayouth, M., Nourbakhsh, I., Thorpe, C.: A hybrid human-computer autonomous vehicle architecture. In: Third ECPD International Conference on Advanced Robotics, Intelligent Automation and Control, Belgrade, Serbia (1997)Google Scholar
  10. Bohn, A.: Produktinnovation, Lecture Notes. Department of Mechanical Engineering, TU Darmstadt (2012)Google Scholar
  11. Brooks, R.: A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2(1), 14–23 (1986)Google Scholar
  12. Broy, M., Krüger, I., Meisinger, M.: Automotive Software—Connected Services in Mobile Networks. Springer, Berlin (2006)CrossRefGoogle Scholar
  13. Darms, M.: Eine Basis-Systemarchitektur zur Sensordatenfusion von Umfeldsensoren für Fahrerassistenzsysteme. VDI, Düsseldorf (2007)Google Scholar
  14. Dickmanns, E.D., Behringer, R., Dickmanns, D., Hildebrandt, T., Maurer, M., Thomanek, F., Schiehlen, J.: The seeing passenger car ’VaMoRs-P’. In: IEEE Intelligent Vehicles Symposium, Paris (1994)Google Scholar
  15. Dickmanns, E.D.: Vision: Von Assistenz zum Autonomen Fahren. In: Maurer, M., Stiller, C. (eds.) Fahrerassistenzsysteme mit maschineller Wahrnehmung. Springer, Berlin (2005)Google Scholar
  16. Donges, E.: Fahrerverhaltensmodelle. In: Winner, H., Hakuli, S., Wolf, G. (eds.) Handbuch Fahrerassistenzsysteme. 2nd edn. Vieweg/Teubner, Wiesbaden (2012)Google Scholar
  17. Gasser, T., Arzt, C., Ayoubi, M., Bartels, A., Bürkle, L., Eier, J., Flemisch, F., Häcker, D., Hesse, T., Huber, W., Lotz, C., Maurer, M., Schumacher, S.-R., Schwarz, J., Vogt, W.: Rechtsfolgen zunehmender Fahrzeugautomatisierung. Wirtschaftsverlag NW, Bremerhaven (2012)Google Scholar
  18. Geyer, S.: Maneuver-based vehicle guidance based on the Conduct-by-Wire principle. In: Maurer, M., Winner, H. (eds.) Automotive Systems Engineering. Springer-Verlag Berlin, Heidelberg (2013)Google Scholar
  19. Häring, J., Wilhelm, U., Sailer, U.: Systemarchitektur des Predictive Safety Systems, in ATZ Elektronik, 3/2009. Springer, Heidelberg (2009)Google Scholar
  20. Hakuli, S., Kluin, M., Geyer, S., Winner, H.: Development and Validation of Manoeuvre-Based Driver Assistance Functions for Conduct-by-Wire with IPG CarMaker, FISITA 2010 World Automotive Congress. Budapest, Hungary (2010)Google Scholar
  21. Hakuli, S., Geyer, S., Winner, H., Henning, J.: Integriertes Konzept für die manöverbasierte Fahrerassistenz, in ATZ Automobiltechnische Zeitschrift, 3/2011. Springer, Heidelberg (2011)Google Scholar
  22. Hakuli, S., Bruder, R., Flemisch, F., Löper, C., Rausch, H., Schreiber, M., Winner, H.: Kooperative Automation. In: Winner, H., Hakuli, S., Wolf, G. (eds.) Handbuch Fahrerassistenzsysteme. 2nd edn. Vieweg/Teubner, Wiesbaden (2012)Google Scholar
  23. IEEE Standard 1471–2000: Recommended practice for architectural description of software-intensive systems, Institute of Electrical and Electronics Engineers/Circuit Theory Group (2000)Google Scholar
  24. Kauer, M., Schreiber, M., Bruder, R.: How to conduct a car? In: IEEE Intelligent Vehicles Symposium 2010. San Diego (2010)Google Scholar
  25. Laugier, C., Fraichard, T., Paromtchik, I.E., Garnier, P.: Sensor-Based Control Architecture for a Car-Like Vehicle, IEEE International Conference on Intelligent Robots and Systems, Victoria (1998)Google Scholar
  26. Löper, C., Kelsch, J., Flemisch, F.: Kooperative, manöverbasierte Automation und Arbitrierung als Bausteine für hochautomatisiertes Fahren, in Automatisierungs-. Assistenzsysteme und eingebettete Systeme für Transportmittel, Gesamtzentrum für Verkehr, Braunschweig (2008)Google Scholar
  27. Maurer, M.: Flexible Automatisierung von Straßenfahrzeugen mit Rechnersehen, VDI Fortschrittsberichte Reihe 12 Nr. 443, VDI, Düsseldorf (2000)Google Scholar
  28. Maurer, M.: Entwurf und Test von Fahrerassistenzsystemen. In: Winner, H., Hakuli, S., Wolf, G. (eds.) Handbuch Fahrerassistenzsysteme. 2nd edn. Vieweg/Teubner, Wiesbaden (2012)Google Scholar
  29. Miura, J., Ito, M., Shirai, Y.: A three-level control architecture for autonomous vehicle driving in a dynamic and uncertain traffic environment. In: IEEE Conference on Intelligent Transportation System, Boston (1997)Google Scholar
  30. Nelson, M.: A design pattern for autonomous vehicle software control architecture. In: IEEE International Computer Software and Applications Conference, Phoenix (1999)Google Scholar
  31. Payton, D.: An architecture for reflexive autonomous vehicle control. In: IEEE International Conference on Robotics and Automation, San Francisco (1986)Google Scholar
  32. Posch, T., Birken, K., Gerdom, M.: Basiswissen Softwarearchitektur, 2. edn. dpunkt, Heidelberg (2007)Google Scholar
  33. Rasmussen, J.: Skills, rules and knowledge; signals, signs and symbols, and other distinctions in human performance models. IEEE Trans. Syst. Man Cybern. 13(03), 257–266 (1983)Google Scholar
  34. Rauskolb, F., Berger, K., Lipski, C., Magnor, M., Cornelsen, K., Effertz, J., Form, T., Graefe F., Ohl, S., Schumacher, W., Wille, J.-M., Hecker, P., Nothdurft, T., Doering, M., Homeier, K., Morgenroth, J., Wolf, L., Basarke, C., Berger, C., Gülke, T., Klose, F., Rumpe, B.: Caroline: an autonomously driving vehicle for urban environments. J. Field Robot. 25(9), 674–724 (2008). Wiley InterScienceGoogle Scholar
  35. Reichart, G., Bielefeld, J.: Einflüsse von Fahrerassistenzsystemen auf die Systemarchitektur im Kraftfahrzeug. In: Winner, H., Hakuli, S., Wolf, G. (eds.) Handbuch Fahrerassistenzsysteme. 2nd edn. Vieweg/Teubner, Wiesbaden (2012)Google Scholar
  36. Rosenblatt, J.: DAMN: a distributed architecture for mobile navigation. J. Exp. Theor. Artif. Intell. 9(2–3), 339–360 (1997)CrossRefGoogle Scholar
  37. Kortenkamp, D., Simmons, R.: Robotic system architectures and programming. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, Springer, Berlin (2008)Google Scholar
  38. Schreier, M., Willert, V.: Robust free space detection in occupancy grid maps by methods of image analysis and dynamic B-Spline contour tracking. In: IEEE Conference on Intelligent Transportation Systems, Anchorage (2012)Google Scholar
  39. Simmons, R.: Structured control for autonomous robots. In: IEEE Transactions on Robotics and Automation, pp. 10–1 (1994)Google Scholar
  40. Starke, G.: Effektive Software-Architekturen, 4th edn. Hanser, München (2009)CrossRefGoogle Scholar
  41. Tölle, W.: Ein Fahrmanöverkonzept für einen maschinellen Kopiloten. VDI, Düsseldorf (1996)Google Scholar
  42. Vogel, O., Mehling, U., Neumann, T., Thomas, A., Chughtai, A., Völter, M., Zdun, U.: Software-Architektur. Spektrum Akademischer, Heidelberg (2005)MATHGoogle Scholar
  43. Winner, H., Weitzel, A.: Quo Vadis, FAS?. In: Winner, H., Hakuli, S., Wolf, G. (eds.) Handbuch Fahrerassistenzsysteme. 2nd edn. Vieweg/Teubner, Wiesbaden (2012)Google Scholar
  44. Zeng, H.: HAVEit—A Driver Centric Vehicle Automation System with a Scalable and Flexible Architecture, 19. Aachener Kolloquium Fahrzeug- und Motorentechnik, Aachen (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Automotive EngineeringTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations