Skip to main content

Balances for Special Applications

  • Chapter
Balances

Abstract

Some special applications and the corresponding balances are described in detail: laboratory balances, micro balances vacuum balances, thermo balances, magnetic suspension balances, oscillators, metrological comparators, tensiometer, suspended particles and elementary charge, mass analyser, density determination, particle analysis, magnetic susceptibility, post office and coin scales, body scales, and gravimeter. Vacuum equipment for balances, thermogravimetry, sorptometry, hygrometry, and moisture determination, gravimetric measurement of reaction kinetics, surface tension, ion traps, pyknometry, dust and particle concentration, grain size analysis are described. Gravimetric measurement of gas pressure and temperature are reported. The use of safety valves is explained. The application of weighing for medical purposes is discussed. Mass determination in astronomy is described. Some weighing curiosities are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Robens, H.R. Jenemann, Remarks on the notion “Microbalance”, in Proceedings of the XXVIth International Conference on Vacuum Microbalance Techniques, ed. by M.b. BenChanaa (Faculté des Sciences Semlalia, Université Cadi Ayyad, Marrakech, 1995), pp. 7–12

    Google Scholar 

  2. T. Gast, E. Robens, Review on modern vacuum microbalances, in Proceedings of the XXVIth International Conference on Vacuum Microbalance Techniques, ed. by M.b. BenChanaa (Faculté des Sciences Semlalia, Université Cadi Ayyad, Marrakech, 1995), pp. 151–158

    Google Scholar 

  3. C.A. Russell (ed.), Recent Developments in the History of Chemistry (The Royal Society of Chemistry, London, 1985)

    Google Scholar 

  4. J.A. Chaptal, Elements de Chymie. Trois volumes (Deterville, Paris, 1796)

    Google Scholar 

  5. L. Žagar, Ermittlung der Größenverteilung von Poren in feuerfesten Baustoffen. Arch. Eisenhüttenwes. 26(9), 561 (1956)

    Google Scholar 

  6. A.M. Basedow, H.R. Jenemann, Waage und Wägung, in Quantitative organische Elementaranalyse, ed. by F. Ehrenberger (VCH, Weinheim, 1991), pp. 79–108

    Google Scholar 

  7. H.R. Jenemann, Zur Geschichte der Mikrochemischen Waage, in Acta Metrologiae Historicae II, ed. by H. Witthöft (Linz, Trauner, 1989)

    Google Scholar 

  8. Al-Chazini, A. a.-R, Kitab mizan al-hikma (Buch der Waage der Weisheit) (Merw 1122) (In Arabian)

    Google Scholar 

  9. N. Khanikoff, Analysis and extract of the book of the balance of Wisdom—an Arabic work of the water balance, written by Al-Chazini in the 12th century. J. Am. Orient. Soc. 6, 1–128 (1860)

    Google Scholar 

  10. F. Sezgin, Al-Chazini’s Balance of Wisdom. Institut für Geschichte der Arabisch-Islamischen Wissenschaften, Johann Wolfgang Goethe-Universität, Frankfurt am Main (2000)

    Google Scholar 

  11. J. Reidy (ed.), Thomas Norton’s Ordinal of Alchemy (Oxford University Press, London, 1975)

    Google Scholar 

  12. G. Agricola, De Re Metallici Libri XII. Zwölf Bücher vom Berg- und Hüttenwesen, 4th edn. (VDI-Verlag, Düsseldorf, 1556)

    Google Scholar 

  13. Wikipedia, Joseph Black. http://en.wikipedia.org/wiki/Joseph_Black (2013)

  14. H.R. Jenemann, Die frühe Geschichte der Mettler-Waage, in Siegener Abhandlungen zur Entwicklung der materiellen Kultur (St. Katharinen, 1992)

    Google Scholar 

  15. E. Salvioni, Misura di Masse Compresa fra g 10−1 e g 10−6 (University of Messina, Messina, 1901)

    Google Scholar 

  16. B.B. Cunningham, J. Am. Chem. Soc. 71, 1521 (1949)

    Google Scholar 

  17. J.S. Stas, Nouvelles recherches sur les lois des proportions chimiques et sur les poids atomiques. Mém. Acad. R. Sci. Lett. B.-Arts Belg. 35(3), 1–311 (1865)

    Google Scholar 

  18. A.A. Fomkin, T.S. Jakubov, V.V. Serpinskii, Adsorption Equilibrium at High Pressure, Experimental Technique and Discussion. 29.11., in Statusseminar 1991: Morphologie und Austauschmechanismen poröser Stoffe (POST) (Universität Siegen, 1991)

    Google Scholar 

  19. H.R. Jenemann, A.M. Basedow, E. Robens, Die Entwicklung der Makro-Vakuumwaage. PTB-Berichte. Vol. TWD-38. Braunschweig, Bremerhaven, Wirschaftsverlag NW. 70 (1992)

    Google Scholar 

  20. H.R. Jenemann, Das Kilogramm der Archive vom 4. Messidor des Jahres 7: Konform mit dem Gesetz vom 18. Germinal des Jahres 3? in Genauigkeit und Präzision, ed. by D. Hoffmann, H. Witthöfft (Physikalisch-Technische Bundesanstalt, Braunschweig, 1996), pp. 183–213

    Google Scholar 

  21. L.-J. Deleuil, J.-A. Deleuil, Balance de Deleuil (Bibiothèque Polytechnique, Paris, 1874)

    Google Scholar 

  22. A. de Lapparent, Biographie de Victor Regnault, in (Ecole Polytechnique) Livre du Centenaire (Gauthier-Villars et fils, Paris, 1897), p. 326. et suiv

    Google Scholar 

  23. L. Loewenherz, Apparate für Messen und Wägen, in Bericht über die wissenschaftlichen Apparate auf der Londoner Internationalen Ausstellung im Jahr 1876 (Vieweg, Braunschweig, 1878), pp. 207–278

    Google Scholar 

  24. K. Scheel, Grundlagen der praktischen Metronomie. Die Wissenschaft, vol. 36 (Vieweg, Braunschweig, 1911), pp. 119–123, exp. 122

    Google Scholar 

  25. T.J. Quinn, New techniques in manufacture of platinum-iridium mass standards. Platin. Met. Rev. 30, 74–79 (1986)

    Google Scholar 

  26. T.R. Quinn, The kilogram: the present state of our knowledge. IEEE Trans. Instrum. Meas. 40(4), 81–85 (1991)

    Google Scholar 

  27. S. Ikeda et al., Surface analytical studyof cleaning effects and the progress on contamination on prototypes of the kilogram. Metrologia 30, 133–144 (1993)

    ADS  Google Scholar 

  28. L.R. Pendrilll, Microscopic and macroscopic properties of gas and buoyancy in precision weighing, in La Massa e la sua Misura, ed. by L. Grossi (Bologna, CLUEB, 1995), pp. 153–160

    Google Scholar 

  29. Y. Kobayashi et al., Prototype kilogram balance II of NRLM. Bull. NRLM 33(2), 7–18 (1984)

    Google Scholar 

  30. Y. Kobayashi et al., Prototype kilogram balance II of NRLM. Bull. NRLM 35(2), 143–158 (1986)

    Google Scholar 

  31. M. Gläser, R. Schwartz, M. Mecke, Experimental determination of air density using a 1 kg mass comparator in vacuum. Metrologia 28, 45–50 (1991)

    ADS  Google Scholar 

  32. W. Nax, Meilenstein in der Wägetechnik: TU Ilmenau und Sartorius AG entwickeln genaueste Waage der Welt. idw/Technische Universität Ilmenau. Informationsdienst Wissenschaft (2009)

    Google Scholar 

  33. M. Gläser, Mass comparators, in Comprehensive Mass Metrology, ed. by M. Kochsiek, M. Gläser (Wiley/VCH, Berlin, 2000), pp. 441–478

    Google Scholar 

  34. H.R. Jenemann, E. Robens, History of vacuum macrobalances, in Microbalance Techniques, ed. by J.U. Keller, E. Robens (Multi-Science Publishing, Brentwood, 1994), pp. 13–23

    Google Scholar 

  35. F. Emich, Ein Beitrag zur quantitativen Mikroanalyse. Monatsh. Chem. 36(6), 407–440 (1915)

    Google Scholar 

  36. J.W. McBain, A.M. Bakr, J. Am. Chem. Soc. 48, 690–695 (1926)

    Google Scholar 

  37. J.W. McBain, H.G. Tanner, A robust microbalance of high sensitivity, suitable for weighing sorbed films. Proc. R. Soc. Lond., A 125, 579–586 (1929)

    ADS  Google Scholar 

  38. E. Robens et al., Considerations on the planned use of a scientific balance on mars. Part II: Choice of the balance. J. Therm. Anal. Calorim. 86(1), 27–29 (2006)

    Google Scholar 

  39. A.W. Czanderna, S.P. Wolsky, Microweighing in Vacuum and Controlled Environments (Elsevier, Amsterdam, 1980)

    Google Scholar 

  40. C. Eyraud, E. Robens, P. Rochas, Some comments on the history of thermogravimetry. Thermochim. Acta 160, 25–28 (1990)

    Google Scholar 

  41. E. Robens, C. Eyraud, P. Rochas, Some comments on the history of vacuum microbalance techniques. Thermochim. Acta 235, 135–144 (1994)

    Google Scholar 

  42. E. Robens, K.K. Unger, Vacuum for balances. J. Therm. Anal. 55, 431–439 (1999)

    Google Scholar 

  43. S. Weber, Bemerkungen über die Gleichgewichtsbedingungen der Gase. Commun. Kamerlingh Onnes Lab. Univ. Leyden 22(246 d) (1936/38)

    Google Scholar 

  44. E. Robens, G. Sandstede, Anordnungen zur präzisen Druckmessung und -regelung im Bereich von 0,1 bis 760 Torr. Vak.-Tech. 16, 125–130 (1967)

    Google Scholar 

  45. C.H. Massen et al., Application of micro balances to the measurement of gas pressure over eight decades, in Thermal Analysis, ed. by H.G. Wiedemann (Birkhäuser, Basel, 1962), pp. 225–233

    Google Scholar 

  46. W. Kollen, A.W. Czanderna, Dynamic vacuum in microbalance chambers, in Vacuum Microbalance Techniques, ed. by C.H. Massen, H.J. van Beckum (Plenum, New York, 1970), pp. 145–159

    Google Scholar 

  47. G. Hakvoort, TG measurement of solid-gas reactions in aggresive gas atmospheres, in Microbalance Techniques, ed. by J.U. Keller, E. Robens (Multi-Science Publishing, Brentwood, 1994), p. 89

    Google Scholar 

  48. A.W. Czanderna, H. Wieder, An apparatus for the simultaneous measurement of the optical transmission and mass changes of thin films, in Vacuum Microbalance Techniques, ed. by R.F. Walker (Plenum, New York, 1962), pp. 147–164

    Google Scholar 

  49. M. Wutz et al., in Theory und Practis of Vacuum Technology (Vieweg, Braunschweig, 1989)

    Google Scholar 

  50. E. Robens, Vacuum systems for vacuum microbalances. Vacuum 35(1), 1–4 (1985)

    Google Scholar 

  51. H.H. Willems, Creep Behaviour and Microstructure of Hardened Cement Pastes (Technische Universiteit, Eindhoven, 1985)

    Google Scholar 

  52. J.W. Clark, An electronic analytical balance. Rev. Sci. Instrum. 18, 915–918 (1947)

    ADS  Google Scholar 

  53. J.W. Beams, Magnetic suspension for small rotors. Rev. Sci. Instrum. 21, 182–184 (1950)

    ADS  Google Scholar 

  54. T. Gast, Registrierendes Wägen im Milligrammbereich und seine Anwendung auf die Staubmessung, in DECHEMA-Monographien K. Bretschneider, K. Fischbeck (DECHEMA, Frankfurt am Main, 1960), pp. 1–19

    Google Scholar 

  55. T. Gast, Microweighing in vacuo with a magnetic suspension balance, in Vacuum Microbalance Techniques, ed. by K.H. Behrndt (Plenum, New York, 1963), pp. 45–54

    Google Scholar 

  56. W. Baran, Overview of applications of permanent magnets, in Proceedings of the 8th International Workshop on Rare-Earth Magnets, ed. by K.J. Strnat (Dayton, Ohio, 1985), pp. 1–14

    Google Scholar 

  57. T. Gast, G. Luce, A directly weighing suspension balance with frequency variant output, in Mechanical Problems in Measuring Force and Mass, ed. by H. Wierings (Nijhoff, Dordrecht, 1986)

    Google Scholar 

  58. T. Gast, H. Jakobs, G. Luce, Transmission of DTA-values from a magnetically suspended sample. Thermochim. Acta 82, 1–14 (1984)

    Google Scholar 

  59. W. Pahlke, Berlin. Technische Universität (1991)

    Google Scholar 

  60. T. Gast, W. Pahlke, Magentic coupling for a microbalance. J. Therm. Anal. 37, 1933–1941 (1991)

    Google Scholar 

  61. T. Gast, A new magnetic coupling for the separation of microbalance and reaction vessel in experiments with controlled atmospheres. Thermochim. Acta 24, 247–250 (1978)

    Google Scholar 

  62. F. Dreisbach, H.W. Lösch, Adsorption equilibria of the pure gases CH4 and H2S and of the mixture CH4/H2S on the zeolite DAY at t = 25°C. J. Therm. Anal. Calorim. 62(2), 515–521 (2000)

    Google Scholar 

  63. F. Dreisbach, H.W. Lösch, Magnetic suspension balance for simultaneous measurement of a sample and the density of the measuring fluid. J. Therm. Anal. Calorim. 62(2), 515–521 (2000)

    Google Scholar 

  64. H.W. Lösch, R. Kleinrahm, W. Wagner, Neue Magnetschwebewaagen für gravimetrische Messungen in der Verfahrenstechnik, in Verfahrenstechnik und Chemieingenieurwesen, Jahrbuch 1994 (VDI-Verlag, Düsseldorf, 1994), pp. 117–137

    Google Scholar 

  65. W.F. Hemminger, H.K. Cammenga, Methoden der thermischen Analyse (Springer, Heidelberg, 1989)

    Google Scholar 

  66. M. Vitruvius Pollio, De Architectura, vol. II/III (Rome, 33–14 BC)

    Google Scholar 

  67. R.C. Mackenzie, Thermochim. Acta 75, 251–306 (1984)

    MathSciNet  Google Scholar 

  68. C. Duval, Inorganic Thermogravimetric Analysis (Elsevier, Amsterdam, 1953)

    Google Scholar 

  69. S. Iwata, Über die Entwicklung der Thermowaage, Besonders in Japan (Chemischen Institut der Universität Bonn, Bonn, 1961)

    Google Scholar 

  70. S. Iwata, Soil-Water Interaction, 2nd edn. (Dekker, New York, 1995)

    Google Scholar 

  71. C. Keattch, An Introduction to Thermogravimetry (Heyden/Sadtler, London, 1969)

    Google Scholar 

  72. C.J. Keattch, The History and Development of Thermogravimetry (University of Salford, Salford, 1977)

    Google Scholar 

  73. C.J. Keattch, Studies in the history and development of thermogravimetry. J. Therm. Anal. Calorim. 44(5) (1995)

    Google Scholar 

  74. J. Šesták, P. Hubík, J.J. Mareš, Historical roots and development of thermal analysis and calorimetry, in Glassy, Amorphous and Nano-Crystalline Materials: Thermal Physics, Analysis, Structure and Properties, ed. by J. Šesták, P. Hubík, J.J. Mareš (Springer, Dordrecht, 2011)

    Google Scholar 

  75. C. Eyraud, P. Rochas, Thermogravimetry and silk conditioning in Lyons. A little known story. Thermochim. Acta 152, 1–7 (1989)

    Google Scholar 

  76. W.F. Hemminger, K.-H. Schönborn, A nineteenth century thermobalance. Thermochim. Acta 39, 321–323 (1980)

    Google Scholar 

  77. K. Honda, On a thermobalance. Sci. Rep. Tôhoku Univ., Sendai Serie 1(4), 97–103 (1915)

    Google Scholar 

  78. K. Honda, Kinzoku No Kenkyū 1, 543 (1924)

    Google Scholar 

  79. M. Guichard, Bull. Soc. Chim. Fr. 33, 258 (1923)

    Google Scholar 

  80. P. Dubois, Bull. Soc. Chim. Fr. 3, 1178 (1935)

    Google Scholar 

  81. P. Chevenard, X. Waché, R. de la Tullaye, Bull. Soc. Chim. Fr. 10, 41 (1944)

    Google Scholar 

  82. C. Eyraud, I. Eyraud, Catalogue, in 50e Expos. Soc. Fr. Physique (1953)

    Google Scholar 

  83. C. Eyraud, I. Eyraud, Laboratoires 12, 13 (1955)

    Google Scholar 

  84. W.A. de Keyser, Nature 172, 364 (1953)

    ADS  Google Scholar 

  85. J. Paulik, F. Paulik, Thermal analysis, part A: Simultaneous thermoanalytical examinations by means of the derivatograph, in Thermal Analysis, ed. by W.W. Wendlandt (Elsevier, Amsterdam, 1981)

    Google Scholar 

  86. J. Paulik, F. Paulik, Simultaneous thermoanalytical examination by means of the derivatograph, in Comprehensive Analytical Chemistry, ed. by W.W. Wendlandt (Elsevier, Amsterdam, 1981)

    Google Scholar 

  87. F. Paulik, Special Trends in Thermal Analysis (Wiley, Chichester, 1995)

    Google Scholar 

  88. G. Liptay, Atlas of Thermoanalytic Curves (Akadémiai Kiadó/Heyden, Budapest/London, 1971–1977)

    Google Scholar 

  89. E. Robens, G. Walter, Thermogravimetrische Arbeitsmethoden. Sprechsaal 104(10), 426–428 (1971)

    Google Scholar 

  90. E. Robens, G. Walter, Thermogravimetrische Arbeitsmethoden. Sprechsaal 104(11), 489–492 (1971)

    Google Scholar 

  91. DIN, DIN 51006: Thermische Analyse (TA) – Thermogravimetrie (TG) – Grundlagen (Beuth, Berlin, 2005)

    Google Scholar 

  92. A.W. Coats, J.P. Redfern, Nature 201, 68–69 (1964)

    ADS  Google Scholar 

  93. H. Barkia, H.L. Belkbir, S.A.A. Jayaweera, Thermal analysis studies of oil shale residual carbon. J. Therm. Anal. Calorim. 76, 615–622 (2004)

    Google Scholar 

  94. T. Berrajaa et al., Thermal analysis studies of the pyrolysis of Tarfaya oil shale, in Carbon ’88, ed. by B. McEnaney, T.J. James (1988), pp. 567–569

    Google Scholar 

  95. P. Staszczuk, D. Glazewski, Study of heterogeneous properties of solids by means of a special thermal analysis techniques. J. Therm. Anal. Calorim. 55, 467–481 (1999)

    Google Scholar 

  96. P. Staszczuk et al., Total heterogeneity of Al2O3 surface. J. Therm. Anal. Calorim. 71(2), 445–458 (2003)

    Google Scholar 

  97. N. Gérard, Thermogravimetric investigation of the decomposition kinetics of a gaseous aluminum hydride compound, in Microbalance Techniques, ed. by J.U. Keller, E. Robens (Multi-Science Publishing, Brentwood, 1994)

    Google Scholar 

  98. R. Berger, J. Gutmann, R. Schäfer, Scanning probe methods: from microscopy to sensing. Bunsenmagazin 2, 42–53 (2011)

    Google Scholar 

  99. S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd edn. (Academic Press/Mir, London/Moscow, 1982/1984)

    Google Scholar 

  100. R.S. Mikhail, E. Robens, Microstructure and Thermal Analysis of Solid Surfaces (Wiley, Chichester, 1983)

    Google Scholar 

  101. F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by Powders & Porous Solids (Academic Press, San Diego, 1999)

    Google Scholar 

  102. S. Lowell et al., Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density (Springer, Dordrecht, 2004)

    Google Scholar 

  103. DIN, Partikelmeßtechnik, 4th edn. DIN Taschenbuch/CD, vol. 133 (Beuth, Berlin, 2004)

    Google Scholar 

  104. E.L. Fuller Jr., Volumetric and gravimetric methods of determining monolayer capacities. Thermochim. Acta 29, 315–318 (1979)

    Google Scholar 

  105. E. Robens et al., Sources of error in sorption and density measurements. J. Therm. Anal. Calorim. 55(2), 383–387 (1999)

    Google Scholar 

  106. E. Robens, A.W. Czanderna, J.A. Poulis, Surface area and pore size determination on finely divided or porous substances by adsorption measurements: comparison of volumetric and gravimetric methods. PMI, Powder Metall. Int. 12(4), 201–203 (1980)

    Google Scholar 

  107. G. Sandstede, E. Robens, Automatisierte Apparatur zur gravimetrischen Bestimmung der spezifischen Oberfläche und der Porengröße. Chem. Ing. Tech. 34(10), 708–713 (1962)

    Google Scholar 

  108. P. Klobes, E. Robens, Standardization of the Pore Size Distribution. Particle & Particle Systems Characterization (2011)

    Google Scholar 

  109. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)

    ADS  Google Scholar 

  110. ISO, ISO 9277: Determination of the Specific Surface Area of Solids by Gas Adsorption Using the BET Method (Beuth, Berlin, 2007)

    Google Scholar 

  111. V.V. Kutarov, E. Robens, The Pickett equation analytical continuation. Adsorption (2010)

    Google Scholar 

  112. V.V. Kutarov, E. Robens, B. Kats, Universal function for the description of multilayer adsorption isotherms. J. Therm. Anal. Calorim. (2006)

    Google Scholar 

  113. J. Adolphs, Excess surface work—a modelless way of getting surface energies and specific surface areas directly from sorption isotherms. Appl. Surf. Sci. 253, 5645–5649 (2007)

    ADS  Google Scholar 

  114. J. Adolphs, M.J. Setzer, A model to describe adsorption isotherms. J. Colloid Interface Sci. 180, 70–76 (1996)

    Google Scholar 

  115. J. Adolphs, M.J. Setzer, Energetic classification of adsorption isotherms. J. Colloid Interface Sci. 184, 443–448 (1996)

    Google Scholar 

  116. ISO, ISO 15901-3 Evaluation of pore size distribution and porosimetry of solid materials by mercury porosimetry and gas adsorption—Part 3: Analysis of micropores by gas adsorption. ISO, Genève

    Google Scholar 

  117. E.P. Barrett, L.G. Joyner, P.H. Halenda, The determination of pore volume and area distribution in porous substances. I. Computation from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (1951)

    Google Scholar 

  118. ISO, ISO 15901-2 Evaluation of pore size distribution and porosimetry of solid materials by mercury porosimetry and gas adsorption—Part 2: Analysis of mesopores and macropores by gas adsorption. ISO, Genève

    Google Scholar 

  119. W. Thomson, Lord Kelvin of Largs, On the equilibrium of vapour at a curved surface of liquid. Philos. Mag. 42(282), 448–452 (1871)

    Google Scholar 

  120. P. Pfeifer, D. Avnir, Chemistry in noninteger dimensions between two and three: I. Fractal theory of heterogeneous surfaces. Chem. Phys. 79(7), 3558–3565 (1983)

    MathSciNet  ADS  Google Scholar 

  121. P. Pfeifer, D.J. Avnir, Chemistry in noninteger dimensions between two and three. Fractal surfaces of adsorbents. Chem. Phys. 79(7), 3566–3571 (1983)

    MathSciNet  ADS  Google Scholar 

  122. D.D. Farin, D. Avnir, The fractal nature of molecule-surface interactions and reactions, in The Fractal Approach to Heterogeneous Chemistry, ed. by D. Avnir (Wiley, Chichester, 1989), pp. 271–293

    Google Scholar 

  123. A.V. Neimark, Thermodynamic method of calculating surface fractal dimension. JETP Lett. 51(10), 607–610 (1990)

    MathSciNet  ADS  Google Scholar 

  124. A.V. Neimark, A new approach to the determination of the surface fractal dimension of porous solids. Physics A 191(1–4), 258–262 (1992)

    ADS  Google Scholar 

  125. A.V. Neimark, Determination of surface fractal dimension from adsorption experimental data. Russ. J. Phys. Chem. 64(10), 2593–2605 (1990)

    Google Scholar 

  126. A.V. Neimark, Calculating surface fractal dimension of adsorbents. Adsorp. Sci. Technol. 7(4), 210–219 (1990)

    MathSciNet  Google Scholar 

  127. A.V. Neimark, E. Robens, K.K. Unger, Berechnung der Fraktaldimension einiger poröser Feststoffe aus der Stickstoff-Adsorptionsisotherme. Z. Phys. Chem. 187, 265–280 (1994)

    Google Scholar 

  128. E. Robens et al., Water vapour sorption and humidtity—a survey on measuring methods and standards, in Humidity Sensors: Types, Nanomaterials and Environmental Monitoring, ed. by C.T. Okada (Nova Science, Hauppauge, 2011), pp. 1–87

    Google Scholar 

  129. E. Gerland, F. Traumüller, Geschichte der physikalischen Experimentierkunst, Leipzig (1899)

    Google Scholar 

  130. N. Cusanus, Idiota de Staticis Experimentis, Dialogus. Codex Cusanus 1456/64 1450, Straßburg Folio 135r

    Google Scholar 

  131. N. Cusanus, Nicolai de Cusa opera omnia. Gesamtausgabe der Heidelberger Akademie. Felix Meiner, Hamburg (2008)

    Google Scholar 

  132. L.B. Alberti, L’architettura. Padua, Firenze (1483/1485)

    Google Scholar 

  133. L.B. Alberti, M. Theurer, Zehn Bücher über die Baukunst (Heller, Wien, 1912)

    Google Scholar 

  134. L. da Vinci, Codex atlanticus—Saggio del Codice atlantico, ed. by Aretin. Vol. fol. 249 verso-a + fol. 8 verso-b Milano (1872)

    Google Scholar 

  135. L. da Vinci, in Catalogue “Les Mots dans le Dessin” of the Cabinet des Dessin. Paris, Louvre (1986)

    Google Scholar 

  136. M.C. Cantu’, T. Settle, The Antique Instruments at the Museum of History of Science in Florence. Arnaud, Firenze (1973)

    Google Scholar 

  137. C.W. Meyer et al., Automated continuous-flow gravimetric hygrometer as a primary humidity standard, in Proceedings for the International Symposium on Humidity and Moisture (National Institute of Metrology, Standardization and Industrial Quality, Rio de Janeiro, 2006), pp. 1–6

    Google Scholar 

  138. V.M. Mecea, J.O. Carlsson, R.V. Bucur, Extension of the quartz-crystal-microbalance technique. Sens. Actuators 53, 371–378 (1996)

    Google Scholar 

  139. T. Brokate et al., Survey on mass determination with oscillating systems. Part II: Instruments and weighing of matter from gaseous environment. J. Therm. Anal. Calorim. 71(1), 25–29 (2003)

    Google Scholar 

  140. S. Mintova, S. Mo, T. Bein, Chem. Mater. 13, 901 (2001)

    Google Scholar 

  141. H. Römpp, Römpp Chemie Lexikon. CD 1.0 ed. Stuttgart, Thieme (1995)

    Google Scholar 

  142. H.-D. Isengard, Bestimmung von Wasser in Lebensmitteln nach Karl Fischer. ZFL, Int. Z. Lebensm.-Technol. -Verfahr. Tech. 42, 1–6 (1991)

    Google Scholar 

  143. H.-D. Isengard, How to determine water in foodstuffs? Analytix 3, 11–15 (2003)

    Google Scholar 

  144. J.B. Hannay, J. Chem. Soc. 32, 381 (1877)

    Google Scholar 

  145. E. Robens, K. Rübner, Gravimetrische Wasserdampfsorptions- und Feuchtemessung an Feststoffen. GIT Z. Labortechnik 47, 1046–1050 (2003),

    Google Scholar 

  146. E. Robens et al., Measurement of water vapour sorption and humidity. A survey on measuring methods and standards. ICTAC News 38(1), 39–46 (2005)

    Google Scholar 

  147. K. Rübner, E. Robens, D. Balköse, Methods of humidity determination. Part I: Hygrometry. J. Therm. Anal. Calorim. 94(3), 669–673 (2008)

    Google Scholar 

  148. Y.M. Volfkovich et al., Techniques of standard porosimetry and possible areas of their use in electrochemistry (Review). Sov. Electrochem. 16(11), 1325–1353 (1981)

    Google Scholar 

  149. A. Brenner et al., Application of a gravimetric sorption system for the investigation of sorption kinetics exemplified at the uptake of hexyne-3 on silikalit-1, in Microbalance Techniques, ed. by J.U. Keller, E. Robens (Multi-Science Publishing, Brentwood, 1994), pp. 73–78

    Google Scholar 

  150. W.H. Kuhn, G. Walter (eds.), Microgravimetric Investigation into the Mechanisme of Corrosion of Reactor Materials in the Presence of Nuclear Radiation. Euratom Report, vol. 1474e (Presses Académiques Européennes, Brussels, 1964)

    Google Scholar 

  151. B. Franklin, Of the stilling of waves by means of oil. Philos. Trans. 64, 445–460 (1774)

    Google Scholar 

  152. A. Pockels, Surface tension. Nature 43, 437–439 (1891)

    Google Scholar 

  153. Wikipedia, Langmuir-Blodgett trough. http://en.wikipedia.org/wiki/Langmuir-Blodgett_trough (2013)

  154. P. Lecomte du Noüy, A new apparatus for measuring surface tension. J. Gen. Physiol., 522–524 (1919)

    Google Scholar 

  155. P. Lecomte du Noüy, An interfacial tensiometer for general use. J. Gen. Physiol. 7, 625–633 (1925)

    Google Scholar 

  156. G. Binning, H. Rohrer, Scanning tunnelling microscopy. IBM J. Res. Dev. 38, 4 (1986)

    Google Scholar 

  157. Wikipedia, Scanning tunneling microscope. http://en.wikipedia.org/wiki/Scanning_tunneling_microscope (2013)

  158. P. Poncheral et al., Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)

    ADS  Google Scholar 

  159. J. Wood, Mass detection finds new resonance. Mater. Today 4, 20 (2004)

    Google Scholar 

  160. B. Ilic et al., Attogram detection using nanoelectromechanical oscillators. J. Appl. Phys. 95(7), 3694–3703 (2004)

    ADS  Google Scholar 

  161. S. Gupta, G. Morell, B.R. Weiner, Electron field-emission mechanism in nanostructured carbon films: a quest. J. Appl. Phys. 95(12), 8314–8320 (2004)

    ADS  Google Scholar 

  162. LaHaye et al., Science 304, 74 (2004)

    ADS  Google Scholar 

  163. C. Sealy, Probing the quantum world with uncertainty. Mater. Today 6, 9 (2004)

    Google Scholar 

  164. R. Berger, J. Gutmann, Polymer brushes on micromechanical cantilevers. Nanopticum 1, 4–5 (2005)

    Google Scholar 

  165. H.J. Jodl, F. Glas, Millikan’s experiment. http://millikan.edu.hel.fi/eng/index.htm. RCL (2008)

  166. H. Hörstermann, I. Jandt, Der Millikan’sche Öltröpfchenversuch. http://home.wtal.de/i-jandt/Physik/Millikan/Millikan.html. Ross Moore, Mathematics Department, Macquarie University, Sydney (2002)

  167. U. Kilian, C. Weber, Lexikon der Physik, vol. 4 (Spektrum Akademischer Verlag, Heidelberg, 2000)

    Google Scholar 

  168. R.A. Millikan, On the elementary electrical charge and the Avogadro constant. Phys. Rev. 2, 109–143 (1913)

    ADS  Google Scholar 

  169. H. Straubel, Naturwissenschaften 42, 506 (1955)

    ADS  Google Scholar 

  170. H. Straubel, Z. Elektrochem. 60, 1033 (1956)

    Google Scholar 

  171. H. Straubel, Acta Phys. Austriaca 13, 265 (1960)

    Google Scholar 

  172. H. Straubel, Phys. Bull. 28, 56 (1972)

    Google Scholar 

  173. G. Böhme et al., Determination of relative weight changes of electrostatically suspended particles in the sub-microgram range, in Progress in Vacuum Microbalance Techniques, ed. by S.C. Bevan, S.J. Gregg, N.D. Parkyns (Heyden, London, 1973), pp. 169–174

    Google Scholar 

  174. G. Böhme et al., Messungen von Gewichtsänderungen an im elektrischen Feld frei schwebenden Teilchen. Sprechsaal 106, 184–188 (1973)

    Google Scholar 

  175. H. Straubel, Chem. Ing. Tech. 43, 853 (1971)

    Google Scholar 

  176. H. Straubel, Aerosol-Rep. 6, 77 (1967)

    Google Scholar 

  177. W. Heide, Berührungslose Messung von Dichte, Viskosität und Oberflächenspannung kleiner Probenvolumina mit Hilfe akustischer Probenpositionierung und -anregung. Frankfurt am Main Battelle-Institut e.V (1990)

    Google Scholar 

  178. C.E. Wieman, D.J. Wineland, D.E. Pritchard, Atom Cooling, Trapping, and Quantum Manipulation. Rev. Mod. Phys., S253–S352 (2000) (Centennial Issue)

    Google Scholar 

  179. D. Rodríguez et al., MATS and LaSpec: high-precision experiments using ion traps and lasers at FAIR. Eur. Phys. J. Spec. Top. 183, 1–123 (2010)

    Google Scholar 

  180. F. DiFilippo et al., Accurate atomic mass measurements from penning trap mass comparisons of individual ions, in Atomic Physics 14, ed. by D.J. Wineland, C.E. Wieman, S.J. Smith (AIP, Boulder/New York, 1995), pp. 149–175

    Google Scholar 

  181. M. Block et al., Direct mass measurements above uranium bridge the gap to the island of stability. Nature 463, 785–788 (2010)

    ADS  Google Scholar 

  182. Wikipedia, Mass spectrometry. http://en.wikipedia.org/wiki/Mass_spectrometry (2008)

  183. O.D. Sparkman, Mass Spectrometry Desk Reference (Global View Pub., Pittsburgh, 2000)

    Google Scholar 

  184. J.J. Thomson, Rays of Positive Electricity and Their Application to Chemical Analysis (Longman’s Green, London, 1913)

    Google Scholar 

  185. W. Paul, H. Steinwedel, Ein neues Massenspektrometer ohne Magnetfeld. Z. Naturforsch. A 8(7), 448–450 (1953)

    ADS  Google Scholar 

  186. Frühgeschichte der Gastechnik, http://www.dvgw.de/dvgw/geschichte/geschichte-des-dvgwF/fruehgeschichte-der-gastechnik/. DVGW, Deutscher Verein des Gas- und Wasserfaches e.V., Bonn (2011)

  187. H. Recknagel, B. Sprenger, E.-R. Schramek, Taschenbuch für Heizung + Klimatechnik 11/12, 75th edn. (Oldenbourg Industrieverlag/Vulcan, München, 2010)

    Google Scholar 

  188. W. Fritsche, Elster – Stationen der Geschichte 1848–1998. http://www.elster-instromet.com/de/downloads/EI_Stationen_Geschichte_1998.pdf. Elster (1998)

  189. J. van Keulen, Density of porous solids. Matér. Constr. 6(33), 181–183 (1973)

    Google Scholar 

  190. J.U. Keller, R. Staudt, Gas Adsorption Equilibria. Experimental Methods and Adsorptive Isotherms (Springer, Heidelberg, 2004)

    Google Scholar 

  191. S. Bohn, Untersuchung der Adsorption von Helium an Aktivkohle Norit R1 Extra und dem Molekularsieb 5A., in Inst. f. Fluid- & Thermodynamik (Siegen, 1996)

    Google Scholar 

  192. Archimedes, §7: About Swimming Bodies, vol. 1 (Wissenschaftliche Verlagsbuchhandlung, Frankfurt am Main, 1987)

    Google Scholar 

  193. D. Fage, Tablles of Temperature for Sikes’s Hydrometer (Robins, London, 1855)

    Google Scholar 

  194. J.S. Donovan, History of Sikes Hydrometer. http://www.promash.com/sikes/history.html (2002)

  195. H.R. Jenemann (ed.), Zur Geschichte der Dichtebestimmung von Flüssigkeiten insbesondere des Traubenmostes in Oechsle-Graden. Schriften zur Weingeschichte, vol. 98 (Gesellschaft für Geschichte des Weins e.V, Wiesbaden, 1990)

    Google Scholar 

  196. K. Brachthäuser et al., Entwicklung eines neuen Dichtemeßverfahrens und Aufbau einer Hochtemperatur-Hochdruck-Dichtemeßanlage. Fortschrittsberichte VDI-Z, Reihe 8, vol. 371 (VDI Verlag, Düsseldorf, 1993)

    Google Scholar 

  197. T. Gast, Elektrische Mikrowägung mit Hilfe trägerfrequenter Regelkreise. ETZ, Elektrotech. Z., Ausg. A 87, 9–13 (1966) (Sonderheft zum 70. Geburtstag von R. Vieweg)

    Google Scholar 

  198. T. Gast, R. Talebi-Daryani, Selbstkompensierend Waage zur kontinuierlichen Messung der Gasdichte. Meß- u. Regelungstechnik, vol. 7010-11-TUB (Technische Universität, Berlin, 1985)

    Google Scholar 

  199. Archimedes, The Works of Archimedes, §7. About Swimming Bodies, vol. 1 (Wissenschaftliche Verlagsbuchhandlung, Frankfurt am Main, 1987)

    Google Scholar 

  200. Archimedes, Abhandlungen. Ostwalds Klassiker der exakten Wissenschaften, vol. 201 (Harri Deutsch, Frankfurt am Main, 2003)

    Google Scholar 

  201. F. Kohlrausch, Praktische Physik, 23rd edn., vol. 3 (Teubner, Stuttgart, 1986)

    Google Scholar 

  202. G.S. Kell, Density, thermal expansivity and compressibility of liquid water from 0°C to 150°C. J. Chem. Eng. Data 20, 97–105 (1975)

    Google Scholar 

  203. H.R. Jenemann, Die Waagenkonstruktionen von Georg Westphal, in 125 Jahre 1860–1985 Westphal-Mechanik/Westphal-Augenoptik, Westphal Mechanik-Augenoptik Celle (1985), pp. 35–45

    Google Scholar 

  204. G.R. Blake, K.H. Hartge, Bulk density, in Methods of Soil Analysis. Part i. Physical and Mineralogical Methods: Agronomy Monograph, ed. by A. Klute (1986)

    Google Scholar 

  205. M. Gläser, Methods of mass determination, in Comprehensive Mass Metrology, ed. by M. Kochsiek, M. Gläser (Wiley/VCH, Berlin, 2000), pp. 184–231

    Google Scholar 

  206. T. Allen, Particle Size Measurement, 5th edn. (Chapman & Hall, London, 1997)

    Google Scholar 

  207. M. Deleuil, Powder technology and pharmaceutical processes, in Handbook of Powder Technology, ed. by D. Chulia, M. Deleuil, Y. Pourcelot (Elsevier, Amsterdam, 1993)

    Google Scholar 

  208. G. Parfitt, Powder Technol. 17(2), 157–162 (1977)

    Google Scholar 

  209. K. Ropkins, R.N. Colville, Airborne pollutants: current practices in air quality monitoring programs. LabPlus Int. 14(5), 22–23 (2000)

    Google Scholar 

  210. A.P.M. Glassford, Application of the quartz crystal microbalance to space system contamination studies, in Applications of Piezoelectric Quartz Crystal Microbalances, ed. by C. Lu, A.W. Czanderna (Amsterdam, Elsevier, 1984), pp. 281–305

    Google Scholar 

  211. C.C.J. French, Advanced techniques for engine research and design. J. Automot. Eng. 203(D3), 169–183 (1989)

    MathSciNet  Google Scholar 

  212. H. Patashnick, E.G. Rupprecht, Continuous measurement using the tapered element oscillating microbalance. J. Air Waste Manage. Assoc. 41(8), 1079–1083 (1991)

    Google Scholar 

  213. D. Büker, T. Gast, Kontinuierliche gravimetrische Staubmessung durch mechanische Resonanz. Chem. Ing. Tech. 39(16), 963–966 (1967)

    Google Scholar 

  214. H. Bahner, Th. Gast, Massebestimmung disperser Stoffe mit Hilfe transversal schwingender Filterbänder. Tech. Mess. 50(1), 3–13 (1983)

    Google Scholar 

  215. K.U. Kramm, Bestimmung von Massen, Viskositäten und E-Moduln mit dem longitudinal schwingenden Band (Technische Universität, Berlin, 1985)

    Google Scholar 

  216. K. Leschonski, W. Alex, B. Koglin, Teilchengrößenanalyse. Chem. Ing. Tech. 43, 23–26 (1974)

    Google Scholar 

  217. Wikipedia, Electromagnetism. http://en.wikipedia.org/wiki/Electromagnetism (2013)

  218. F.E. Senftke et al., Quartz helix susceptibility balance using the Curie-Cheneveau principle. Rev. Sci. Instrum. 29(5), 429–432 (1958)

    ADS  Google Scholar 

  219. A. van den Bosch, Static magnetic susceptibility measurements on NBS-SRM aluminium, in Progress in Vacuum Microbalnce Techniques, ed. by C. Eyraud, M. Escoubes (Heyden, London, 1975), pp. 398–408

    Google Scholar 

  220. H.G. Wiedemann, G. Bayer, Comparison of temperature measurements in the range of 400–2500 k by use of a thermobalance, in Progress in Vacuum Microbalance Techniques, ed. by C. Eyraud, M. Escoubes (London, Heyden, 1975), pp. 103–107

    Google Scholar 

  221. C.H. Massen et al., Application of micro balances to the measurement of gas pressure over eight decades, in Thermal Analysis, ed. by H.G. Wiedemann (Birkhäuser, Basel, 1972), pp. 225–233

    Google Scholar 

  222. H.G. Wiedemann, Application of thermogravimetry for vapor pressure determination. Thermochim. Acta 1(3), 355–366 (1972)

    Google Scholar 

  223. E. Robens, R. Sieglen, Overpressure protection valve for high-vacuum apparatus. Vacuum 21(10), 484 (1971)

    Google Scholar 

  224. T. Gast, T. Brokate, E. Robens, Vacuum weighing, in Comprehensive Mass Metrology, ed. by M. Kochsiek, M. Gläser (Wiley/VCH, Weinheim 2000), pp. 296–399

    Google Scholar 

  225. T. Gast, A device for simultaneous determination of mass and reaction force of a gas stream from a heated sample, in Thermal Analysis, ed. by H.G. Wiedemann (Birkhäuser, Basel, 1972), pp. 235–241

    Google Scholar 

  226. T. Gast, Simultaneous measurement of weight and torque and torque by magnetic suspension, in Microweighing in Vacuum and Controlled Environments, ed. by A.W. Czanderna, S.P. Wolsky (Elsevier, Amsterdeam, 1980), pp. 393–395

    Google Scholar 

  227. M. Hass, Scales and Weights. A collection of historical scles and weights from different periods of the past 3000 years. http://www.s-a-w.net/ (2010)

  228. B. Woodcroft (ed.), The Pneumatics of Hero of Alexandria (Taylor/Maberly, London, 1851)

    Google Scholar 

  229. T.-Y. So, E. Farrington, R.K. Absher, Evaluation of the accuracy of different methods used to estimate weights in the pediatric population. Pediatrics 123(6), e1054–e1051 (2009)

    Google Scholar 

  230. H. Homann, Die Personenwaage der Wiesbadener Curverwaltung. Mass & Gewicht 97, 2390–2391 (2011)

    Google Scholar 

  231. S. Santorio, M. Lister, G. Baglivi, De statica medicina aphorismorum. Sectionis septem. De ponderatione insensibilis perspirationis (Venezia, 1759)

    Google Scholar 

  232. Wikipedia, Body weight. Human_weight. http://en.wikipedia.org/wiki/ (2011)

  233. A. Keys et al., Indices of relative weight and obesity. J. Chronic. Dis. 1 25(6), 329–343 (1972)

    Google Scholar 

  234. Body mass index. http://en.wikipedia.org/wiki/Body_mass_index (2011)

  235. D. Lörinczy (ed.), Thermal Analysis in Medical Application Wide Diversity in Thermal Analysis and Calorimetry, ed. by J. Simon (Akadémiai Kiadó, Budapest, 2011)

    Google Scholar 

  236. S. Dong, Mass of Earth, in The Physics Factbook. http://hypertextbook.com/facts/2002/SamanthaDong2.shtml, ed. by G. Elert (2002)

  237. Wikipedia, Earth. http://en.wikipedia.org/wiki/Earth (2013)

  238. Wikipedia, Solar mass. http://en.wikipedia.org/wiki/Solar_mass (2011)

  239. S. Mereghetti et al., An ultra-massive fast-spinning white dwarf in a peculiar binary system. Science 4.9 (2009)

    Google Scholar 

  240. NASA, Apollo. http://www.nasa.gov/mission_pages/apollo/index.html. National Aeronautics and Space Administation (2007)

  241. T.A. Davis et al., A black-hole mass measurement from molecular gas kinematics in NGC4526. Nature, 11819 (2013)

    Google Scholar 

  242. F. Gastaldello et al., Probing the dark matter and gas fraction in relaxed galaxy groups with x-ray observations from chandra and XMM-Newton. Astrophys. J. 669(1), 158–183 (2007)

    ADS  Google Scholar 

  243. D.A. Buote et al., The x-ray concentration-virial mass relation. Astrophys. J. 664(1), 123–134 (2007)

    ADS  Google Scholar 

  244. D.B. Cline, The Search for Dark Matter. Sci. Am. 3 (2003)

    Google Scholar 

  245. T. Livius, Ab urbe condita. Lib. 1-5. 10, Rom

    Google Scholar 

  246. T. Livius (ed.), The history of Rome (Ab urbe condita. Lib. 1-5). Electronic Text Center, University of Virginia Library, ed. by E.t.b.R.C. Roberts. E.P. Dutton and Co., New York (1912)

    Google Scholar 

  247. C.H. Massen et al., Investigation on a model for a large balance of the XVIII Egyptian dynasty, in Microbalance Techniques, ed. by J.U. Keller, E. Robens (Multi-Science Publishing, Brentwood, 1994), pp. 5–12

    Google Scholar 

  248. B. Wälti, in Ein metaphysikalisches Experiment zur Frage ob der Astralkörper ein Gewicht hat und mit einem Hinweis auf die dunkle Materie. http://www.beniwaelti.ch/inline_libra.htm (1997/2005)

  249. S.J. Muldoon, H. Carrington, Die Aussendung des Astralkörpers (Herm. Bauer, Freiburg, 1996)

    Google Scholar 

  250. J.B. Rhine, Extra-Sensory Perception After Sixty Years (1940)

    Google Scholar 

  251. N.-O. Jacobson, Leben nach dem Tod? (Liv efter döden?) Bastei-Lübbe-Taschenbuch, vol. 10086. Bergisch Gladbach Bastei-Lübbe (1937/1979)

    Google Scholar 

  252. W.-H. Hucho, Vorstoß in den Weltraum – Max Valier – Pionier der Raumfahrt, wurde vor 100 Jahren in Bozen geboren. VDI-Nachr., Mag. 5, 34 (1995)

    Google Scholar 

  253. M. Wade, Valier, http://www.astronautix.com/astros/valier.htm, in Encyclopedia Astronautica (2011)

  254. EsoWatch, Global scaling. http://www.esowatch.com/ge/index.php?title=Global_Scaling EsoWatch (2011)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robens, E., Jayaweera, S.A.A., Kiefer, S. (2014). Balances for Special Applications. In: Balances. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36447-1_5

Download citation

Publish with us

Policies and ethics