Skip to main content

Balances

  • Chapter
Balances

Abstract

Typical parts of the gravitational balance are: balance beam, sample container, connecting parts like suspensions, hinges, lever, bearings, deflection sensor, counteracting, and indicator system. The balance types described include symmetrical and asymmetrical mechanical (besemer, steelyard) counterweight and electro-mechanical balances, suspension balances, aerometer, top pan and platform scales, decimal scales, deflection scales, pendulum scales, elastic force balance, spring balance, torsion balance, as well as molecular elastic forces, and bioforces. The torsion pendulum can be used to determine the gravitational constant, Earth’s mass, and the gravitational field and to control watches. The torsion balance is applied for microweighing. Load cells are based on elastic bodies with strain gauge, piezoelectric or hydraulic sensors. Gyro-, buoyancy-, voltage-, watt-, current, electrostatic balances, and electrometers are used for special applications. Today, besides cheap mechanical scales, for wide-range precision weighing self-compensating electromagnetic systems are applied and for less accurate weighing load cells. To measure and control the mass throughput in industrial plants momentum scales are used. Using Coriolis forces also liquid flow can be measured. The radiometric belt weigher allows in addition the determination of the density of the flowing material. To measure evaporation, adsorption (also in liquids), dust concentration, etc. oscillating devices are applied. Elastic forces, often combined with oscillation allow for measurements down to molecular forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Robens, A. Dąbrowski, The measuring range of balances. ICTAC News 37(2), 80–83 (2004)

    Google Scholar 

  2. H.R. Jenemann, Zehntausend Jahre Waage? Teil 1. Mass Gewicht, Beih. Z. Metrol. 21, 470–487 (1992)

    Google Scholar 

  3. H.R. Jenemann, Zehntausend Jahre Waage? Teil 2. Mass Gewicht, Beih. Z. Metrol. 22, 509 (1992)

    Google Scholar 

  4. H.R. Jenemann, The early history of balances based on electromagnetic and elektrodynamic force compensation, in Microbalance Techniques, ed. by J.U. Keller, E. Robens (Multi-Science, Brentwood, 1994), pp. 25–53

    Google Scholar 

  5. M. Kochsiek (ed.), Handbuch des Wägens, 2nd edn. (Vieweg, Braunschweig, 1985)

    Google Scholar 

  6. M. Kochsiek, M. Gläser (eds.), Comprehensive Mass Metrology (Wiley/VCH, Berlin, 2000)

    Google Scholar 

  7. DIN, DIN 8120, Teil 3: Begriffe im Waagenbau. Berlin Beuth (1981)

    Google Scholar 

  8. H.R. Jenemann, Die Entwicklung der Präzisionswaage, in Handbuch des Wägens, ed. by M. Kochsiek (Vieweg, Braunschweig, 1989), pp. 745–779

    Google Scholar 

  9. T. Gast, T. Brokate, E. Robens, Vacuum weighing, in Comprehensive Mass Metrology, ed. by M. Kochsiek, M. Gläser (Wiley/VCH, Weinheim, 2000), pp. 296–399

    Google Scholar 

  10. H.R. Jenemann, A.M. Basedow, E. Robens, Die Entwicklung der Makro-Vakuumwaage. PTB-Berichte, vol. TWD-38. Braunschweig, Bremerhaven (1992). Wirschaftsverlag NW. 70

    Google Scholar 

  11. A.W. Czanderna, J.M. Honig, Anal. Chem. 29, 1206–1210 (1937)

    Google Scholar 

  12. J.A. Poulis, W. Dekker, P.J. Meeusen, The use of pivot bearings in sensitive balances, in Vacuum Microbalance Techniques, ed. by K.H. Behrndt (Plenum, New York, 1965), pp. 49–58

    Google Scholar 

  13. E. Hering, R. Martin, M. Stohrer, Physik für Ingenieure, 3rd edn. (VDI Verlag, Düsseldorf, 1989)

    Google Scholar 

  14. W. Espe, Werkstoffkunde der Hochvakuumtechnik, vol. 1 (VEB Deutscher Verlag der Wissenschaften, 1960)

    Google Scholar 

  15. E.A. Gulbransen, K.F. Andrew, An enclosed physical chemistry laboratory: the vacuum microbalance, in Vacuum Microbalance Techniques, ed. by M.J. Katz (Plenum, New York, 1961), pp. 1–21

    Google Scholar 

  16. T. Gast, Elektrische Mikrowägung mit Hilfe trägerfrequenter Regelkreise. ETZ, Elektrotech. Z., Ausg. A 87, 9–13 (1966) (Sonderheft zum 70. Geburtstag von R. Vieweg)

    Google Scholar 

  17. E.G. Woschni, Meßgrößenverarbeitung (Verlag Chemie, Weinheim, 1969)

    Google Scholar 

  18. T. Gast, Gesichtspunkte für die Gestaltung einer elektrischen Mikrowaage zur Messung von Oberflächenspannungen. Wägen + Dos. 2, 59–62 (1983)

    Google Scholar 

  19. G. Luce, Balkenlose Schwebewaage mit negativer magnetischer Federkonstante nach dem Prinzip der unterlagerten Stromregelung (Technische Universität, Berlin, 1991)

    Google Scholar 

  20. D. Kisch, Konstruktion einer hochstabilen elektronischen Mikrowaage für Diffusionsmessungen. Z. Phys. Chem. 77, 176–184 (1972)

    Google Scholar 

  21. R. Vieweg, T. Gast, Registrierende Mikrowaage für Diffusionsmessungen an Kunststoff-Membranen. Kunststoffe 34, 117–119 (1944)

    Google Scholar 

  22. H. Mayer et al., On some modifications of a torsion microbalance for use in ultrahigh vacuum, in Vacuum Microbalance Techniques, ed. by K.H. Behrndt (Plenum, New York, 1963), pp. 75–84

    Google Scholar 

  23. T. Gast, K.P. Gebauer, Measuring of the density of gases with the aid of free suspension. Thermochim. Acta 51, 1–6 (1981)

    Google Scholar 

  24. H. Tischner, in Entwicklungstendenzen und Neukonstruktionen im Analysenwaagenbau. Dechema-Monographien, vol. 27 (Dechema, Frankufrt am Main, 1956)

    Google Scholar 

  25. H. Büchel, Beitrag zur Lagerung von Hebelfeinwaagen. Universität Stuttgart (1972)

    Google Scholar 

  26. J. Wang, Design of gas bearing systems for precision applications. Proefschrift. Eindhoven, Technical University (1993)

    Google Scholar 

  27. P. Holster, Gaslagers met uitwendige drukbron. T.b.v. praktikum 4N023 (Lagers), werkeenheid Aandrijf- en Tribotechniek, vakgroep WOC. Eindhoven Technische Universiteit (1992)

    Google Scholar 

  28. W. Seifert, Ein Beitrag zur exakten Wägung unter dem Einfluß wechselnder Beschleunigung (Technische Universität, Berlin, 1975)

    Google Scholar 

  29. K.P. Zinnow, J.P. Dybwad, Pressure of light used as restoring force on an ultramicrobalance, in Vacuum Microbalance Techniques, ed. by A.W. Czanderna (Plenum, New York, 1971), pp. 147–153

    Google Scholar 

  30. A.W. Czanderna, S.P. Wolsky, Microweighing in Vacuum and Controlled Environments (Elsevier, Amsterdam, 1980)

    Google Scholar 

  31. J. Thölden, Haligraphia, das ist Gründliche und eigendliche Beschreibung aller Saltz Mineralien (1603)

    Google Scholar 

  32. H.R. Jenemann (ed.), Zur Geschichte der Dichtebestimmung von Flüssigkeiten insbesondere des Traubenmostes in Oechsle-Graden, Schriften zur Weingeschichte, vol. 98 (Gesellschaft für Geschichte des Weins e.V, Wiesbaden, 1990)

    Google Scholar 

  33. J.M. Honig, Use of pivotal microbalance design for determination of mass changes, in Vacuum Microbalance Techniques, ed. by M.J. Katz (Plenum, New York, 1961), pp. 55–68

    Google Scholar 

  34. T. Gast, E. Robens, Free suspension systems in mass determination, in Microbalance Techniques, ed. by J.U. Keller, E. Robens (Multiscience, Brentwood, 1994), pp. 65–72

    Google Scholar 

  35. T. Gast, Microweighing in vacuo with a magnetic suspension balance, in Vacuum Microbalance Techniques, ed. by K.H. Behrndt (Plenum, New York, 1963), pp. 45–54

    Google Scholar 

  36. T. Gast, W. Pahlke, Magentic coupling for a microbalance. J. Therm. Anal. 37, 1933–1941 (1991)

    Google Scholar 

  37. H.R. Jenemann, Über die Aufhänge- und Arretierungsvorrichtung der ägyptischen Waage der Pharaonenzeit. Ber. Wiss.gesch. 11, 67–82 (1988)

    Google Scholar 

  38. H.R. Jenemann, The development of the determination of mass, in Comprehensive Mass Metrology, ed. by M. Kochsiek, M. Gläser (Wiley/VCH, Berlin, 2000), pp. 119–163

    Google Scholar 

  39. Aristoteles, a.t., Questiones mechanicae. Kleine Schriften zur Physik und Metaphysik., ed. by P. Gohlke (Paderborn, 1957)

    Google Scholar 

  40. T.N. Winter, The mechanical problems in the corpus of Aristotle, in Classics and Religious Studies, Faculty Publications, Classics and Religious Studies Department (University of Nebraska, Lincoln, 2007)

    Google Scholar 

  41. T. Heath, The Works of Archimedes (Dover, Mineola)

    Google Scholar 

  42. Archimedes, Archimedes Werke (Darmstadt, 1983)

    Google Scholar 

  43. A.G. Drachmann, Fragments from Archimedes in Heron’s Mechanics. Centaurus 8, 91–146 (1963)

    MathSciNet  ADS  MATH  Google Scholar 

  44. K.E. Haeberle, 10 000 Jahre Waage (Bizerba, Balingen, 1966)

    Google Scholar 

  45. M.J. Schiefsky (ed.), Even without math, ancients engineered sophisticated machines. http://www.fas.harvard.edu/home/news_and_events/releases/math_10012007.html. Archimedes Projec., Harvard University, Cambridge, MA (2009)

  46. Avery-Weigh-Tronix, The History of Weighing. http://www.wtxweb.com/. Avery Weigh-Tronix (2008)

  47. China-Window, Chinese Steelyard—Gancheng. http://www.china-window.com/china_culture/china_culture_essentials/chinese-steelyard-ganchen.shtml. China Window (2008)

  48. S. Thompson, Steelyard made in China. http://www.powerhousemuseum.com/. Powerhouse Museum Sidney EMu collection information system and research files (2007)

  49. L. da Vinci, Codex atlanticus—Saggio del Codice atlantico, ed. by Aretin. Vol. fol. 249 verso-a + fol. 8 verso-b Milano (1872)

    Google Scholar 

  50. J. Leupold, Theatrum staticum – das ist: Schauplatz der Gewichtskunst. Theatrum staticum universale, Leipzig (1726)

    Google Scholar 

  51. H. Michel, P.A. Kirchvogel, Messen über Zeit und Raum. Stuttgart (1965)

    Google Scholar 

  52. J.H. Lambert, Theoria Staterarum. Acta Helvetica, Physico-, Mathematico, Anatomico-, Botanico-, Medica 3, 13–22 (1758)

    Google Scholar 

  53. H.R. Jenemann, Early History of the Inclination Balance. Equilibrium, Quarterly Magazine of ISASC (1983), pp. 571–578; 602–610. International Society of Antique Scale Collectors

    Google Scholar 

  54. H.R. Jenemann, Zur frühen Geschichte der Neigungswaage. Mass Gewicht 11, 210–215, see also 248–253 (1980)

    Google Scholar 

  55. A. Munz et al., Waagen und Wiegen – Die Geschichte des Waagenbaus in und um Onstmettingen im Zollernalbkreis & Der Arbeitskreis “Waagen und Gewichte”. Förderverein Philipp-Matthäus-Hahn-Museum e.V, Albstadt (2006)

    Google Scholar 

  56. H.R. Jenemann, Der Mechaniker-Pfarrer Philipp Mathäus Hahn und die Ausbreitung der Feinmechanik in Südwestdeutschland. Z. Württemb. Landesgesch. 46, 117–161 (1987)

    Google Scholar 

  57. H.R. Jenemann, Die wägetechnischen Arbeiten von Philipp Matthäus Hahn, in Philipp Matthäus Hahn, 1739–1790, ed. by C. Väterlein (Stuttgart, 1989)

    Google Scholar 

  58. L. Auger, Un Savant Méconnu, Gilles Personne de Roberval (Blanchard, Paris, 1962)

    MATH  Google Scholar 

  59. W. Kent, Kent’s torsion balance. Sci. Am. 24, 601, Supplement (1887)

    Google Scholar 

  60. M.A. Crawforth, Handbook of Old Weighing Instruments (International Society of Antique Scale Collectors, Chicago, 1984)

    Google Scholar 

  61. Wikipedia, Thaddeus Fairbanks. http://en.wikipedia.org/wiki/Thaddeus_Fairbanks (2010)

  62. Wikipedia, Dezimalwaage. http://de.wikipedia.org/wiki/Dezimalwaage (2011)

  63. R. Radok, General Theory of Motion and Force. http://mpec.sc.mahidol.ac.th/radok/physmath/PHYSICS/B5.htm. Mahidol Physics. Education, Centre, Bangkok, Thailand (2009)

  64. R. Hooke, De Potentia Restitutiva or of Spring, explaining the Power of Springing Bodies. Lectiones Cutleriana or a collection of Lectures. Physical, Mechanical, Geographical, & Astronautical. Early Science in Oxford, vol. VIII (Gunther, London, 1678/1679)

    Google Scholar 

  65. H.R. Jenemann, Robert Hooke und die frühe Geschichte der Federwaage. Ber. Wiss.gesch. 8, 121–130 (1985)

    Google Scholar 

  66. R. Hooke, A description of helioscopes and some other instruments. Tract VI of: R. Hooke: Lectiones Cutleriana or a Collection of Lecturs Physical, Mechanical, Geographical, & Astronomical. Early Science in Oxford: The Cutler Lectures of Robert Hooke, vol. VIII (Gunther, Oxford & London, 1676)

    Google Scholar 

  67. W.A. Benton, The early history of the spring balance. Trans. Newcom. Soc. 22, 65–78 (1941/1942)

    Google Scholar 

  68. C. Weigel, Gemein-Nützliche Hauptstände. Regensburg, 1698

    Google Scholar 

  69. J. Dolaeus, De libella nova. Miscellanus curiosa sive Ephemeridum medico-physicarum Germanicarum Academiae Imperialis Leopoldina 2. Decuria, 8, pp. 295–296 (1689)

    Google Scholar 

  70. J. Ozanam, Recréations mathemathiques et physiques. Paris (1696)

    Google Scholar 

  71. M. Hass, Scales and Weights. A collection of historical scales and weights from different periods of the past 3000 years (2010). http://www.s-a-w.net/

  72. E. Salvioni, Misura di Masse Compresa Fra G 10 −1 eg10−6 (University of Messina, Messina, 1901)

    Google Scholar 

  73. J. Giesen, Ann. Phys. 10(4), 830 (1903)

    Google Scholar 

  74. B.B. Cunningham, Microchemical methods used in nuclear research. Nucleonics 5(5), 62–85 (1949)

    Google Scholar 

  75. P.L. Kirk, F.L. Schaffer, Rev. Sci. Instrum. 19, 785 (1948)

    ADS  Google Scholar 

  76. P.L. Kirk, F.L. Schaffer, Rev. Sci. Instr., 250 (1951)

    Google Scholar 

  77. W.A. Robertson, in Ultra Micro Weight Determination in Controlled Environments, ed. by S.P. Wolsky, E.J. Zdanuk (Interscience, New York, 1969), pp. 86–87

    Google Scholar 

  78. C. Moreau, Recording MacBain balance, in Vacuum Microbalance Techniques (Plenum, New York, 1965), pp. 21–33

    Google Scholar 

  79. L. Hodges, The Michell-Cavendish experiment. http://www.public.iastate.edu/~lhodges/Michell.htm (1998)

  80. H. Cavendish, Experiments to determine the density of the Earth. Philos. Trans. R. Soc. Lond. (Part II) 88, 469–526 (1798)

    Google Scholar 

  81. H. Cavendish, Experiments to Determine the Density of the Earth, in Scientific Memoirs, vol. 9: The Laws of Gravitation, ed. by A.S. MacKenzie (American Book Co., 1798/1900), pp. 59–105

    Google Scholar 

  82. C.-A.d. Coulomb, Recherches théoriques et expérimentales sur la force de torsion et sur l’élasticité des fils de metal. Histoire de l’Académie Royale des Sciences, 1784, pp. 229–269

    Google Scholar 

  83. C.-A.d. Coulomb, Premier Mémoire sur l’Electricité et le Magnétisme; Construction et usage d’une Balance électrique, fondée sur la propriété qu’ont les Fils de métal, d’avoir une force de réaction proportionelle à l’usage de Torsion. Histoire de l’Académie Royale des Sciences, avec les Mémoires de Mathématique & de Physique (Paris) (Mém), 1785, pp. 569–577

    Google Scholar 

  84. W. Weber, Über drei neue Methoden der Konstruktion von Waagen, in Wilhelm Weber’s Werke (Berlin, 1892), pp. 489–496

    Google Scholar 

  85. H. Pettersson, A new micro-balance and its use. Diss. Stockholm, in Göteborg’s Vet. of Vitterh. Samhalle’s Handlinger (Göteborg, 1914)

    Google Scholar 

  86. H. Pettersson, Experiments with a new micro-balance. Proc. Phys. Soc. Lond. 32, 209–221 (1919)

    Google Scholar 

  87. D. Steele, K. Grant, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 86, 270 (1912)

    Google Scholar 

  88. D. Steele, K. Grant, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 82, 580 (1909)

    ADS  Google Scholar 

  89. E.A. Gulbransen, Trans. Am. Electrochem. Soc. 81, 327–339 (1942)

    Google Scholar 

  90. F.R. Fischer, W.B. Schweizer, F. Diederich, Molecular torsion balances: evidence for favorable orthogonal dipolar interactions between organic fluorine and amide groups. Angew. Chem., Int. Ed. Engl. 46(43), 8270–8273 (2007)

    Google Scholar 

  91. Wikipedia, Dehnungsmessstreifen. http://de.wikipedia.org/wiki/Dehnungsmessstreifen (2007)

  92. B. Meißner, C.U. Volkmann, Prüfung von Dehnungsmeßstreifen-Wägezellen. PTB-Bericht, vol. Me-30. Braunschweig, PTB (1981)

    Google Scholar 

  93. E.E. Simmons, Jr., Method of making strain gauges, U.S.P. Office, Editor. USA, 1948

    Google Scholar 

  94. A.C. Ruge, Electrical load weighing apparatus. U.S.P. Office, Editor. The Baldwin Locomotive Works, USA, 1949

    Google Scholar 

  95. H. Hinderer, Die Kreiselwaage – ein neuartiges Wägeprinzip. Wägen + Dos. 5, 102–104 (1974)

    Google Scholar 

  96. M. Gläser, Methods of mass determination, in Comprehensive Mass Metrology, ed. by M. Kochsiek, M. Gläser (Wiley/VCH, Berlin, 2000), pp. 184–231

    Google Scholar 

  97. A. Stock, G. Ritter, Gasdichtebestimmungen mit der Schwebewage. Z. Phys. Chem. 119, 333–367 (1926)

    Google Scholar 

  98. E. Schneider, Daten zu Eiffelturm. http://www.baufachinformation.de/denkmalpflege.jsp?md=1988017121187 (2010)

  99. T. Gast, Neue Anwendungen der selbsttätigen Kompensation. AEÜ, Arch. Elektron. Übertrag.tech. 1, 114–121 (1947)

    Google Scholar 

  100. R.J. Kolenkow, P.W. Zitzewitz, A microbalance for magnetic susceptibility measurements, in Vacuum Microbalance Techniques, ed. by P.M. Waters (Plenum, New York, 1965), pp. 195–208

    Google Scholar 

  101. C.A. Hausen, Novi profectus in historia electricitatis (Leipzig, 1743)

    Google Scholar 

  102. D. Gralath, Geschichte der Elektrizität. Part VI. Versuche und Abhandlungen der Naturforschenden Gesellschaft zu Dantzig (1747), pp. 175–304

    Google Scholar 

  103. Anonymus, Letter to mr. John Ellicot, F.R.S.: about weighing the strength of electrical effluvia. Philos. Trans. R. Soc. Lond. A 44, 96–99 (1746)

    Google Scholar 

  104. E. Gerland, F. Traumüller, Geschichte der physikalischen Experimentierkunst (Leipzig, 1899)

    Google Scholar 

  105. F. Rosenberger, Die Geschichte der Physik, II (Braunschweig, 1884)

    Google Scholar 

  106. W. Thomson, Measurement of the electrostatic force produced by a Daniell’s battery. Proc. R. Soc. Lond. 10, 319–326 (1860)

    Google Scholar 

  107. J. Frick, Physikalische Technik, 7th edn., vol. II/1 (Braunschweig, 1907)

    Google Scholar 

  108. H. Helmholtz, Über eine electrodynamische Wage. Wiedemanns Ann. Phys. Chem. 250(14), 52–54 (1881)

    ADS  Google Scholar 

  109. K. Kahle, Das Helmholtz’sche absolute Elektrodynamometer. Z. Instrum.kd. 17, 97–109 (1897)

    Google Scholar 

  110. K. Kahle, Das Helmholtz’sche absolute Elektrodynamometer und eine Anwendung desselben zur Messung der Spannung des Clark-Elementes. Wiedemanns Ann. Phys. Chem. 295(59), 532–574 (1896)

    ADS  Google Scholar 

  111. T. Gast, Wirkungsweise und Anwendungsergebnisse der registrierenden Staubwaage. Chem. Ing. Tech. 24, 505–508 (1952)

    Google Scholar 

  112. V. Crémieu, Sur une balance très sensible pouvant servir de galvanomètre et d’électromètre absolu. C. R. Hebd. Séances Acad. Sci. 132, 1267–1270 (1901)

    Google Scholar 

  113. H.R. Jenemann, Über die Grundlagen und die geschichtliche entwicklung elektro-mechanischer wägesysteme. teil I - III. CLB, Chem. Labor Betr. 36, 393–396 (1985), see also 500–504, 629–632

    Google Scholar 

  114. H.R. Jenemann, Über die Grundlagen und die geschichtliche Entwicklung elektro-mechanischer Wägesysteme. Teil IV–VI. CLB, Chem. Labor Betr. 37, 169–172 (1986), see also 344–345, 631–633

    Google Scholar 

  115. H.R. Jenemann, Über die Grundlagen und die geschichtliche Entwicklung elektro-mechanischer Wägesysteme. Teil VII. CLB, Chem. Labor Betr. 38, 240–246 (1987)

    Google Scholar 

  116. W. Weber, Elektrodynamische Maassbestimmungen. Poggendorffs Ann. Phys. Chem. 149(73), 193–240 (1848)

    Google Scholar 

  117. E. Hoppe, Geschichte der Elektrizität (Leipzig, 1884)

    Google Scholar 

  118. H.R. Jenemann, La balance électro-magnétique de Becquerel. Le Système métrique. Bull. Soc. Métr. Fr. (1987), pp. 321–327

    Google Scholar 

  119. O. Frölich, Die Entwickelung der elektrischen Messung (Braunschweig, 1905)

    Google Scholar 

  120. E. Lenz, M. Jacobi, Ueber die Gesetze der Elektromagnete. Poggendorffs Ann. Phys. 123(47), 225–270 (1839)

    Google Scholar 

  121. A. Cazin, Mémoire sur l’Evaluation en Unités de poids des Actions életrodynamiques. Ann. Chim. Phys. 4. série 1, 257–276 (1864)

    Google Scholar 

  122. A. Cazin, Beschreibung der electrodynamischen Wage. (Ed. Ph.) 1, in Repertorium für Physikalische Technik, für Mathematische und Astronomische Instrumentenkunde 1, ed. by P. Carl (1866), pp. 42–46

    Google Scholar 

  123. F.C.G. Müller, Neue galvanische Apparate für den Unterricht, sowie für den technischen Gebrauch. Z. Instrum.kd. 4, 119–125 (1884)

    Google Scholar 

  124. K. Ångström (ed.), Eine Wage zur Bestimmung der Stärke magnetischer Felder, Repertorium der Physik, ed. by P. Carl, vol. 25 (1889), pp. 383–387

    Google Scholar 

  125. K. Ångström, Två metronomiska hjälpapparater. Oefversigt af Kongl. Vetenskap-Akademiens Foerhandlingar 52, 643–655 (1895)

    Google Scholar 

  126. H.R. Jenemann, Zur Geschichte der Substitutionswägung und der Substitutionswaage. Technikgeschichte 49, 89–131 (1982)

    MathSciNet  Google Scholar 

  127. J.C. Poggendorff, Ein Vorschlag zum Messen der magnetischen Abweichung. Poggendorffs Ann. Phys. 83(7), 121–130 (1826)

    Google Scholar 

  128. G. Gorbach, Die Mikrowaage. Mikrochemie 20(2/3), 236–254 (1936)

    Google Scholar 

  129. H. Kruspe, Präzisionswaage nach Art des Elektrodynamometers, in Deutsches Reichspatent (1898)

    Google Scholar 

  130. W.E. Ayrton, T. Mather, F.E. Smith, A new current weigher and a determination of the electromotive force of the normal Weston cadmium cell. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 207, 463–541 (1908)

    ADS  MATH  Google Scholar 

  131. A.C. Waltenhofen, Über einen einfachen Apparat zur Nachweisung des magnetischen Verhaltens eiserner Röhren. Sitzungsber. Akad. Wiss. Wien, Mat.-Nat. Klasse 62, 438–440 (1870)

    Google Scholar 

  132. A.C. Waltenhofen, Über einen einfachen Apparat zur Nachweisung des magnetischen Verhaltens eiserner Röhren. Repertorium für Experimentalchemie, für Physikalische Technik, Mathematische und Astronomische Instrumentenkunde, vol. 6 (1870), pp. 119–125

    Google Scholar 

  133. H.E.J.G. du Bois, Eine magnetische Waage und deren Gebrauch. Z. Instrum.kd. 12, 404–408 (1892)

    Google Scholar 

  134. P. Janet, F. Laporte, R. Jouaust, Détermination par un Electrodynamomètre absolu de la Force Electromotrice des Elémens au Cadmium. Bull. Soc. Int. électr., 2. série 8, 459–522 (1908)

    Google Scholar 

  135. H. Pellat, Nouvel Electrodynamomètre absolu et détermination de la Force Electromotrice de l’élément du type Weston. Bull. Soc. Int. électr., 2. série 8, 573–633 (1908)

    Google Scholar 

  136. P. Pascal, Mesure des susceptibilités magnétiques des corps solides. C. R. Hebd. Séances Acad. Sci. 150, 1054–1056 (1910), see also 1514

    Google Scholar 

  137. B. Weber, Skript zur Vorlesung Molekulare Magnete (2009)

    Google Scholar 

  138. G. Urbain, C. Boulanger, Sur une balance-laboratoire à compensation électromagnetique à l’étude des systèmes qui dégagent des gaz avec une vitesse sensible. Compt. Rend. 154, 347–349 (1912)

    Google Scholar 

  139. K. Honda, On a thermobalance. Sci. Rep. Tohoku Univ., Ser. 1 4, 97–103 (1915)

    Google Scholar 

  140. F. Emich, Einrichtung und Gebrauch der zu chemischen Zwecken verwendbaren Mikrowaagen, in Handbuch der biochemischen Arbeitsmethoden, ed. by E. Abderhalden (Berlin/Wien, 1919), pp. 55–147

    Google Scholar 

  141. F. Emich, Einrichtung und Gebrauch der zu chemischen Zwecken verwendbaren Mikrowaagen, in Handbuch der biologischen Arbeitsmethoden, ed. by E. Abderhalden (Berlin/Wien, 1921), pp. 183–269

    Google Scholar 

  142. E. Wiesenberger, Die Anwendung der elektromagnetischen Mikrowaage bei der Ausführung von Rückstandsbestimmungen und Elektrolysen nach dem Gammaverfahren. Mikrochemie 10, 10–26 (1932)

    Google Scholar 

  143. E. Wedekind, Über eine magnetische Mikrowaage. Z. Elektrochem. Angew. Phys. Chem. 41, 358–363 (1928)

    Google Scholar 

  144. J.W. McBain, H.G. Tanner, A robust microbalance of high sensitivity, suitable for weighing sorbed films. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 125, 579–586 (1929)

    ADS  Google Scholar 

  145. E. Lehrer, E. Kuss, Eine verbesserte Gasdichtewaage mit elektromagnetischer Messeinrichtung. Z. Phys. Chem. 163, 73–81 (1932)

    Google Scholar 

  146. F.C. Edwards, R.R. Baldwin, Magnetically controlled quartz fiber microbalance. Anal. Chem. 23, 357–361 (1951)

    Google Scholar 

  147. S. Odén, On the size of the particles in deep-sea deposite. Proc. R. Soc. Edinb. 36, 219–235 (1916)

    Google Scholar 

  148. J.R.N. Coutts et al., An automatic and continuous recording balance (The Odén-Keen-balance). Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 106, 33–51 (1924)

    ADS  Google Scholar 

  149. T. Gast, Permanent magnets in measuring techniques, in Proceedings of the 8th International Workshop on Earth Magnets and their Application (Dayton, 1985)

    Google Scholar 

  150. U. Tietze, C. Schenck, Halbleiter-Schaltungstechnik (Springer, Berlin, 1976)

    Google Scholar 

  151. R. Hönl, Ein Stauchscheibenmeßfühler mit Kraftkompensation als selbstkalibrierendes Meßsystem. Dissertation, vol. d 83 (Technische Universität, Berln, 1987)

    Google Scholar 

  152. T. Gast, E. Alpers, Ponderometrische Bestimmung dielektrischer Größen. Z. Angew. Phys. 1, 228–232 (1948)

    Google Scholar 

  153. T. Gast et al., Survey on mass determination with oscillating systems. Part I: Fundamentals and history. J. Therm. Anal. Calorim. 71(1), 19–23 (2003)

    Google Scholar 

  154. T. Brokate et al., Survey on mass determination with oscillating systems. Part II: Instruments and weighing of matter from gaseous environment. J. Therm. Anal. Calorim. 71(1), 25–29 (2003)

    Google Scholar 

  155. E.H. Weber, E.W. Weber, Wellenlehre, auf Experimente gegründet (Leipzig, 1825)

    Google Scholar 

  156. V.M. Mecea, Fundamentals of mass measurement. J. Therm. Anal. Calorim. 86(1), 9–16 (2006)

    Google Scholar 

  157. V.M. Mecea, Is quartz crystal microbalance really a mass sensor? Sens. Actuators A, Phys. 128(2), 270–277 (2006)

    Google Scholar 

  158. V.M. Mecea, J.O. Carlsson, R.V. Bucur, Extension of the quartz-crystal-microbalance technique. Sens. Actuators 53, 371–378 (1996)

    Google Scholar 

  159. K. Doblhofer, K.G. Weil, Application of the quartz microbalance in electrochemistry. Bunsenmagazin 9(5), 162–172 (2007)

    Google Scholar 

  160. G. Sauerbrey, Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 155, 206–222 (1959)

    ADS  Google Scholar 

  161. G. Sauerbrey, Wägung dünner Schichten mit Schwingquarzen. Phys. Verh. 8, 193 (1957)

    Google Scholar 

  162. A.W. Warner, C.D. Stockbridge, Mass and thermal measurements with resonating crystalline quartz, in Vacuum Microbalance Techniques, ed. by R.F. Walker (Plenum, New York, 1962), pp. 71–92

    Google Scholar 

  163. W.H. Wade, L.J. Slutsky, Adsorption on quartz single crystals, in Vacuum Microbalance Techniques, ed. by R.F. Walker (Plenum, New York, 1962), pp. 115–128

    Google Scholar 

  164. W.H. King Jr., Applications of the quartz crystal resonator, in Vacuum Microbalance Techniques, ed. by A.W. Czanderna (Plenum, New York, 1971), pp. 183–200

    Google Scholar 

  165. C. Lu, A.W. Czanderna, Applications of Piezoelectric Quartz Crystal Microbalances (Elsevier, Amsterdam, 1984)

    Google Scholar 

  166. H. Thanner et al., GAPO4 high temperature crystal microbalance demonstration up to 720 °C. J. Therm. Anal. Calorim. 71(1), 53–59 (2003)

    Google Scholar 

  167. H.K. Pulker, J.P. Decostered, Applications of quartz crystal microbalances for thin film deposition process control, in Applications of Piezoelectric Quartz Crystal Microbalances, ed. by C. Lu, A.W. Czanderna (Elsevier, Amsterdam, 1984), pp. 63–123

    Google Scholar 

  168. W.G. Cady, Piezoelectricity (McGraw Hill, New York, 1946)

    Google Scholar 

  169. A.P.M. Glassford, Application of the quartz crystal microbalance to space system contamination studies, in Applications of Piezoelectric Quartz Crystal Microbalances, ed. by C. Lu, A.W. Czanderna (Elsevier, Amsterdam, 1984), pp. 281–305

    Google Scholar 

  170. Z. Ali, K. Pavey, E. Robens, Survey on mass determination with oscillating systems. Part III: Acoustic wave mass sensors for chemical and biological sensing. J. Therm. Anal. Calorim. 71(1), 31–35 (2003)

    Google Scholar 

  171. Z. Ali, Recent advances of quartz crystal microbalances in chemical and biological sensing. J. Therm. Anal. Calorim. (2002)

    Google Scholar 

  172. Q-sense, Q-sense AB, Stena Center 18, SE-41292 Göteborg

    Google Scholar 

  173. Z. Ali et al., Gas-sensing system using an array of coated quartz crystal microbalances with a fuzzy inference system. J. Therm. Anal. Calorim. 55(2), 371–381 (1999)

    Google Scholar 

  174. Z. Ali et al., Denuder tube preconcentration and detection of gaseous ammonia using a coated quartz piezoelectric crystal. Analyst 117, 899–903 (1992)

    ADS  Google Scholar 

  175. T.P. Burg et al., Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446(4), 1066–1069 (2007)

    ADS  Google Scholar 

  176. K.K. Kanazawa, J.G. Gordon, Anal. Chim. Acta 175, 99 (1985)

    Google Scholar 

  177. J. Bell, T. Köhler, D. Woermann, Change of the resonance frequency of a quartz crystal microbalance in contact with an aequeous dispersion of solid particles. Ber. Bunsenges. Phys. Chem. 101(6), 879–883 (1997)

    Google Scholar 

  178. H. Nowotny, E. Benes, General one-dimensional treatment of the layered piezoelectric resonator with two electrodes. J. Acoust. Soc. Am. 82(August), 513–521 (1987)

    ADS  Google Scholar 

  179. H. Nowotny, E. Benes, M. Schmid, Layered piezoelectric resonators with an arbitrary number of electrodes (one dimensional treatment). J. Acoust. Soc. Am. 90(September), 1238–1245 (1991)

    ADS  Google Scholar 

  180. Kösslinger et al., A quartz crystal biosensor for measurement in liquids. Biosens. Biolectron. 7, 397–404 (1992)

    Google Scholar 

  181. Woias et al., Biosensors for HIV-immunodiagnosis, in In Vivo Chemical Sensors: Recent Developments, ed. by T. Alcock (Cranfield, 1993)

    Google Scholar 

  182. Drobe et al., Acoustic sensors based on surface localized HPSWs for measurements in liquids. Sens. Actuators A, Phys. 37–38, 141–148 (1993)

    Google Scholar 

  183. D. Büker, T. Gast, Kontinuierliche gravimetrische Staubmessung durch mechanische Resonanz. Chem. Ing. Tech. 39(16), 963–966 (1967)

    Google Scholar 

  184. T. Gast, Microweighing in vacuo with the aid of vibrations of a thin band, in Vacuum Microbalance Techniques, ed. by C.H. Massen, H.J. van Beckum (Plenum, New York, 1970), pp. 105–107

    Google Scholar 

  185. T. Gast, Pramanik, Verfahrenstechnik 7, 4 (1973)

    Google Scholar 

  186. H. Bahner, Th. Gast, Massebestimmung disperser Stoffe mit Hilfe transversal schwingender Filterbänder. Tech. Mess. 50(1), 3–13 (1983)

    Google Scholar 

  187. H. Bahner, T. Gast, GIT, Z. Labortechnik 25(9) (1981)

    Google Scholar 

  188. K.U. Kramm, Bestimmung von Massen, Viskositäten und E-Moduln mit dem longitudinal schwingenden Band (Technische Universität, Berlin, 1985)

    Google Scholar 

  189. T. Gast, T. Brokate, Progress in mass determination with the aid of a vibrating ribbon. Measurement 17(3), 141–149 (1996)

    Google Scholar 

  190. T. Gast, The longtudinally oscillating ribbon as a sensor for mass changes in controlled atmospheres. Thermochim. Acta 112(1), 67 (1987)

    Google Scholar 

  191. H. Patashnick, E.G. Rupprecht, Continuous measurement using the tapered element oscillating microbalance. J. Air Waste Manage. Assoc. 41(8), 1079–1083 (1991)

    Google Scholar 

  192. C.C.J. French, Advanced techniques for engine research and design. J. Automob. Eng. 203(D3), 169–183 (1989)

    MathSciNet  Google Scholar 

  193. H.P. Lang, M. Hegner, C. Gerber, Cantilever array sensors. Mater. Today 4, 30–36 (2005)

    Google Scholar 

  194. R. Berger, J. Gutmann, R. Schäfer, Scanning probe methods: from microscopy to sensing. Bunsenmagazin 2, 42–53 (2011)

    Google Scholar 

  195. R. Berger et al., Chem. Phys. Lett. 294, 363–369 (1998)

    ADS  Google Scholar 

  196. P. Poncheral et al., Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)

    ADS  Google Scholar 

  197. B. Ilic et al., Attogram detection using nanoelectromechanical oscillators. J. Appl. Phys. 95(7), 3694–3703 (2004)

    ADS  Google Scholar 

  198. S. Gupta, G. Morell, B.R. Weiner, Electron field-emission mechanism in nanostructured carbon films: a quest. J. Appl. Phys. 95(12), 8314–8320 (2004)

    ADS  Google Scholar 

  199. J. Wood, Mass detection finds new resonance. Mater. Today 4, 20 (2004)

    Google Scholar 

  200. M.D. LaHaye et al., Approaching the quantum limit of a nanomechanical resonator. Science 304(5667), 74–77 (2004)

    ADS  Google Scholar 

  201. C. Sealy, Probing the quantum world with uncertainty. Mater. Today 6, 9 (2004)

    Google Scholar 

  202. Z.L. Wang, The new field of nanopiezotronics. Mater. Today 10(5), 20–28 (2007)

    Google Scholar 

  203. K. Jensen, K. Kim, A. Zettl, An atomic-resolution nanomechanical mass sensor. Nat. Nanotechnol. 3(7), 533–537 (2008)

    ADS  Google Scholar 

  204. C. Chen et al., Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotechnol. 9 (2009)

    Google Scholar 

  205. M. Taghioskoui, Trends in graphene research. Mater. Today 12(10), 34–37 (2009)

    Google Scholar 

  206. J.S. Bunch et al., Electromechanical resonators from graphene sheets. Science 315, 490 (2007)

    ADS  Google Scholar 

  207. J. Chaste et al., High-frequency nanotube mechanical resonators. Appl. Phys. Lett. 99, 213502 (2011)

    ADS  Google Scholar 

  208. A. Bachtold, Graphene ElectroMechanical Resonators (2012)

    Google Scholar 

  209. B. Dumé, The yoctogram weighs in. Physicsworld.com (2012)

  210. J.U. Keller, Theory of measurement of gas-adsorption equilibria by rotational oscillations. Adsorption 1, 283–290 (1995)

    Google Scholar 

  211. C. Huygens, Une nouvelle invention d’horloges très-justes & portatives. J. Savans, 68–70 (1675)

    Google Scholar 

  212. M.F. Zöllner, Zur Geschichte des Horizontalpendels. Kgl. sächs. Gesellsch. der Wissensch. zu Leipzig, math.-phys. Klasse, 1872(11)

    Google Scholar 

  213. M.F. Zöllner, Ueber einen neuen Apparat zur Messung anziehender und abstoßender Kräfte. Kgl. sächs. Gesellsch. der Wissensch. zu Leipzig, math.-phys. Klasse, 1869(11)

    Google Scholar 

  214. M.F. Zöllner, Ueber einen neuen Apparat zur Messung anziehender und abstoßender Kräfte. Kgl. sächs. Gesellsch. der Wissensch. zu Leipzig, math.-phys. Klasse, 1871(6)

    Google Scholar 

  215. E. von Rebeur-Paschwitz, Das Horizontalpendel. Nova acta der Kais. Leop. Carol. Akad. 60(1) (1894)

    Google Scholar 

  216. R. Ehlert, Horizontalpendelbeobachtungen, in Beiträge zur Geophysik, ed. by E. Gerland (Stuttgart, 1895), p. 131

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robens, E., Jayaweera, S.A.A., Kiefer, S. (2014). Balances. In: Balances. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36447-1_4

Download citation

Publish with us

Policies and ethics