Respiratory Motion Correction in Cone-Beam CT for Image-Guided Radiotherapy

Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Cone-beam CT has been integrated with the linear accelerator for image-guided radiotherapy, i.e., the accurate assessment and correction of the target position prior to treatment delivery. The slowness of these cone-beam CT scanners, which rotate at less than 1 rpm, induces respiratory motion artifacts if the patient can breath freely during the acquisition. As in conventional CT, several techniques have been proposed to correct for these artifacts. Respiration-correlated cone-beam CT assumes that respiratory motion is periodic to sort the cone-beam projection images in subsets according to a respiratory signal, and reconstructs from each subset the corresponding phase of the respiratory cycle, resulting in a 4D cone-beam CT image. A more advanced solution is motion-compensated cone-beam CT which necessitates an estimate of the respiratory motion during the cone-beam acquisition to compensate for the respiratory motion during the reconstruction from all the cone-beam projection images. This chapter is an overview of these recent developments for correction of respiratory motion in cone-beam CT for image-guided radiotherapy.


  1. 1.
    Andersen, A., Kak, A.: Simultaneous algebraic reconstruction technique (SART): a superior implementation of the art algorithm. Ultrason. Imaging 6(1), 81–94 (1984)Google Scholar
  2. 2.
    Bergner, F., Berkus, T., Oelhafen, M., Kunz, P., Pan, T., Grimmer, R., Ritschl, L., Kachelriess, M.: An investigation of 4D cone-beam CT algorithms for slowly rotating scanners. Med. Phys. 37(9), 5044–5053 (2010)CrossRefGoogle Scholar
  3. 3.
    Bergner, F., Berkus, T., Oelhafen, M., Kunz, P., Pan, T., Kachelriess, M.: Autoadaptive phase-correlated (AAPC) reconstruction for 4D CBCT. Med. Phys. 36(12), 5695–5706 (2009)CrossRefGoogle Scholar
  4. 4.
    Bissonnette, J.P., Franks, K., Purdie, T., Moseley, D., Sonke, J.J., Jaffray, D., Dawson, L., Bezjak, A.: Quantifying interfraction and intrafraction tumor motion in lung stereotactic body radiotherapy using respiration-correlated cone beam computed tomography. Int. J. Radiat. Oncol. Biol. Phys. 75(3), 688–695 (2009)CrossRefGoogle Scholar
  5. 5.
    Blessing, M., Stsepankou, D., Wertz, H., Arns, A., Lohr, F., Hesser, J., Wenz, F.: Breath-hold target localization with simultaneous kilovoltage/megavoltage cone-beam computed tomography and fast reconstruction. Int. J. Radiat. Oncol. Biol. Phys. 78(4), 1219–1226 (2010)CrossRefGoogle Scholar
  6. 6.
    Blondel, C., Vaillant, R., Malandain, G., Ayache, N.: 3D tomographic reconstruction of coronary arteries using a precomputed 4D motion field. Phys. Med. Biol. 49(11), 2197–2208 (2004)CrossRefGoogle Scholar
  7. 7.
    Case, R., Moseley, D., Sonke, J.J., Eccles, C., Dinniwell, R., Kim, J., Bezjak, A., Milosevic, M., Brock, K., Dawson, L.: Interfraction and intrafraction changes in amplitude of breathing motion in stereotactic liver radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 77(3), 918–925 (2010)CrossRefGoogle Scholar
  8. 8.
    Case, R., Sonke, J.J., Moseley, D., Kim, J., Brock, K., Dawson, L.: Inter- and intrafraction variability in liver position in non-breath-hold stereotactic body radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 75(1), 302–308 (2009)CrossRefGoogle Scholar
  9. 9.
    Chang, J., Mageras, G., Yorke, E., De Arruda, F., Sillanpaa, J., Rosenzweig, K., Hertanto, A., Pham, H., Seppi, E., Pevsner, A., Ling, C., Amols, H.: Observation of interfractional variations in lung tumor position using respiratory gated and ungated megavoltage cone-beam computed tomography. Int. J. Radiat. Oncol. Biol. Phys. 67(5), 1548–1558 (2007)CrossRefGoogle Scholar
  10. 10.
    Chang, J., Sillanpaa, J., Ling, C., Seppi, E., Yorke, E., Mageras, G., Amols, H.: Integrating respiratory gating into a megavoltage cone-beam CT system. Med. Phys. 33(7), 2354–2361 (2006)CrossRefGoogle Scholar
  11. 11.
    Chen, M., Siochi, R.: Diaphragm motion quantification in megavoltage cone-beam CT projection images. Med. Phys. 37(5), 2312–2320 (2010)CrossRefGoogle Scholar
  12. 12.
    Chen, M., Siochi, R.: Feasibility of using respiratory correlated mega voltage cone beam computed tomography to measure tumor motion. J. Appl. Clin. Med. Phys. 12(2), 3473 (2011)Google Scholar
  13. 13.
    Desbat, L., Roux, S., Grangeat, P.: Compensation of some time dependent deformations in tomography. IEEE Trans. Med. Imaging 26(2), 261–269 (2007)CrossRefGoogle Scholar
  14. 14.
    Dietrich, L., Jetter, S., Tücking, T., Nill, S., Oelfke, U.: Linac-integrated 4D cone beam CT: first experimental results. Phys. Med. Biol. 51(11), 2939–2952 (2006)CrossRefGoogle Scholar
  15. 15.
    Feldkamp, L., Davis, L., Kress, J.: Practical cone-beam algorithm. J. Opt. Soc. Am. A 1(6), 612–619 (1984)ADSCrossRefGoogle Scholar
  16. 16.
    Grangeat, P., Koenig, A., Rodet, T., Bonnet, S.: Theoretical framework for a dynamic cone-beam reconstruction algorithm based on a dynamic particle model. Phys. Med. Biol. 47(15), 2611–2625 (2002)CrossRefGoogle Scholar
  17. 17.
    Hugo, G., Liang, J., Campbell, J., Yan, D.: On-line target position localization in the presence of respiration: a comparison of two methods. Int. J. Radiat. Oncol. Biol. Phys. 69(5), 1634–1641 (2007)CrossRefGoogle Scholar
  18. 18.
    Isola, A., Ziegler, A., Koehler, T., Niessen, W., Grass, M.: Motion-compensated iterative cone-beam CT image reconstruction with adapted blobs as basis functions. Phys. Med. Biol. 53(23), 6777–6797 (2008)CrossRefGoogle Scholar
  19. 19.
    Jaffray, D., Lindsay, P., Brock, K., Deasy, J., Tomé, W.: Accurate accumulation of dose for improved understanding of radiation effects in normal tissue. Int. J. Radiat. Oncol. Biol. Phys. 76(3), S135–S139 (2010)CrossRefGoogle Scholar
  20. 20.
    Jaffray, D., Siewerdsen, J., Wong, J., Martinez, A.: Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 53(5 Suppl), 1337–1349 (2002)CrossRefGoogle Scholar
  21. 21.
    Kak, A., Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE Press, New York (1988)MATHGoogle Scholar
  22. 22.
    Katsevich, A.: An accurate approximate algorithm for motion compensation in two-dimensional tomography. Inverse Prob. 26(6), 065,007 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Keall, P., Mageras, G., Balter, J., Emery, R., Forster, K., Jiang, S., Kapatoes, J., Low, D., Murphy, M., Murray, B., Ramsey, C., van Herk, M., Vedam, S., Wong, J., Yorke, E.: The management of respiratory motion in radiation oncology report of AAPM task group 76. Med. Phys. 33(10), 3874–3900 (2006)CrossRefGoogle Scholar
  24. 24.
    Leng, S., Tang, J., Zambelli, J., Nett, B., Tolakanahalli, R., Chen, G.H.: High temporal resolution and streak-free four-dimensional cone-beam computed tomography. Phys. Med. Biol. 53(20), 5653–5673 (2008)CrossRefGoogle Scholar
  25. 25.
    Leng, S., Zambelli, J., Tolakanahalli, R., Nett, B., Munro, P., Star-Lack, J., Paliwal, B., Chen, G.H.: Streaking artifacts reduction in four-dimensional cone-beam computed tomography. Med. Phys. 35(10), 4649–4659 (2008)CrossRefGoogle Scholar
  26. 26.
    Li, T., Koong, A., Xing, L.: Enhanced 4D cone-beam CT with inter-phase motion model. Med. Phys. 34(9), 3688–3695 (2007)CrossRefGoogle Scholar
  27. 27.
    Li, T., Schreibmann, E., Yang, Y., Xing, L.: Motion correction for improved target localization with on-board cone-beam computed tomography. Phys. Med. Biol. 51(2), 253–267 (2006)CrossRefGoogle Scholar
  28. 28.
    Li, T., Xing, L.: Optimizing 4D cone-beam CT acquisition protocol for external beam radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 67(4), 1211–1219 (2007)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Li, T., Xing, L., Munro, P., McGuinness, C., Chao, M., Yang, Y., Loo, B., Koong, A.: Four-dimensional cone-beam computed tomography using an on-board imager. Med. Phys. 33(10), 3825–3833 (2006)CrossRefGoogle Scholar
  30. 30.
    Lu, J., Guerrero, T.M., Munro, P., Jeung, A., Chi, P.C., Balter, P., Zhu, X., Mohan, R., Pan, T.: Four-dimensional cone beam CT with adaptive gantry rotation and adaptive data sampling. Med. Phys. 34(9), 3520–3529 (2007)CrossRefGoogle Scholar
  31. 31.
    Markelj, P., Tomaževič, D., Likar, B., Pernuš, F.: A review of 3D/2D registration methods for image-guided interventions. Med. Image Anal. 16(3), 642–661 (2012)CrossRefGoogle Scholar
  32. 32.
    Martin, J., McClelland, J., Thomas, C., Wildermuth, K., Landau, D., Ourselin, S., Hawkes, D.: Motion modelling and motion compensated reconstruction of tumours in cone-beam computed tomography. In: Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (2012)Google Scholar
  33. 33.
    Maurer, J., Godfrey, D., Wang, Z., Yin, F.F.: On-board four-dimensional digital tomosynthesis: first experimental results. Med. Phys. 35(8), 3574–3583 (2008)CrossRefGoogle Scholar
  34. 34.
    Maurer, J., Pan, T., Yin, F.F.: Slow gantry rotation acquisition technique for on-board four-dimensional digital tomosynthesis. Med. Phys. 37(2), 921–933 (2010)CrossRefGoogle Scholar
  35. 35.
    Mc Kinnon, G., Bates, R.: Towards imaging the beating heart usefully with a conventional CT scanner. IEEE Trans. Biomed. Eng. 28(2), 123–127 (1981)CrossRefGoogle Scholar
  36. 36.
    Pengpan, T., Qiu, W., Smith, N., Soleimani, M.: Cone beam CT using motion-compensated algebraic reconstruction methods with limited data. Comput. Methods Programs Biomed. 105(3), 246–256 (2012)CrossRefGoogle Scholar
  37. 37.
    Pengpan, T., Smith, N., Qiu, W., Yao, A., Mitchell, C., Soleimani, M.: A motion-compensated cone-beam CT using electrical impedance tomography imaging. Physiol. Meas. 32(1), 19–34 (2011)CrossRefGoogle Scholar
  38. 38.
    Purdie, T., Moseley, D., Bissonnette, J.P., Sharpe, M., Franks, K., Bezjak, A., Jaffray, D.: Respiration correlated cone-beam computed tomography and 4DCT for evaluating target motion in stereotactic lung radiation therapy. Acta Oncol. 45(7), 915–922 (2006)CrossRefGoogle Scholar
  39. 39.
    Qi, Z., Chen, G.H.: Extraction of tumor motion trajectories using PICCS-4DCBCT: a validation study. Med. Phys. 38(10), 5530–5538 (2011)CrossRefGoogle Scholar
  40. 40.
    Qi, Z., Chen, G.H.: Performance studies of four-dimensional cone beam computed tomography. Phys. Med. Biol. 56(20), 6709–6721 (2011)CrossRefGoogle Scholar
  41. 41.
    Reyes, M., Malandain, G., Koulibaly, P., Gonzàlez-Ballester, M., Darcourt, J.: Model-based respiratory motion compensation for emission tomography image reconstruction. Phys. Med. Biol. 52(12), 3579–3600 (2007)CrossRefGoogle Scholar
  42. 42.
    Rit, S., Nijkamp, J., van Herk, M., Sonke, J.J.: Comparative study of respiratory motion correction techniques in cone-beam computed tomography. Radiother. Oncol. 100(3), 356–359 (2011)CrossRefGoogle Scholar
  43. 43.
    Rit, S., Sarrut, D., Desbat, L.: Comparison of analytic and algebraic methods for motion-compensated cone-beam CT reconstruction of the thorax. IEEE Trans. Med. Imaging 28(10), 1513–1525 (2009)CrossRefGoogle Scholar
  44. 44.
    Rit, S., van Herk, M., Zijp, L., Sonke, J.J.: Quantification of the variability of diaphragm motion and implications for treatment margin construction. Int. J. Radiat. Oncol. Biol. Phys. 82(3), e399–e407 (2012)CrossRefGoogle Scholar
  45. 45.
    Rit, S., Wolthaus, J., van Herk, M., Sonke, J.J.: On-the-fly motion-compensated cone-beam CT using an a priori model of the respiratory motion. Med. Phys. 36(6), 2283–2296 (2009)CrossRefGoogle Scholar
  46. 46.
    Ritchie, C., Crawford, C., Godwin, J., King, K., Kim, Y.: Correction of computed tomography motion artifacts using pixel-specific back-projection. IEEE Trans. Med. Imaging 15(3), 333–342 (1996)CrossRefGoogle Scholar
  47. 47.
    Ritchie, C., Godwin, J., Crawford, C., Stanford, W., Anno, H., Kim, Y.: Minimum scan speeds for suppression of motion artifacts in CT. Radiology 185(1), 37–42 (1992)Google Scholar
  48. 48.
    Roux, S., Desbat, L., Koenig, A., Grangeat, P.: Exact reconstruction in 2D dynamic CT: compensation of time-dependent affine deformations. Phys. Med. Biol. 49(11), 2169–2182 (2004)CrossRefGoogle Scholar
  49. 49.
    Santoro, J., Kriminski, S., Lovelock, D., Rosenzweig, K., Mostafavi, H., Amols, H., Mageras, G.: Evaluation of respiration-correlated digital tomosynthesis in lung. Med. Phys. 37(3), 1237–1245 (2010)CrossRefGoogle Scholar
  50. 50.
    Sidky, E., Pan, X.: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys. Med. Biol. 53(17), 4777–4807 (2008)CrossRefGoogle Scholar
  51. 51.
    Sonke, J.J., Belderbos, J.: Adaptive radiotherapy for lung cancer. Semin. Radiat. Oncol. 20(2), 94–106 (2010)CrossRefGoogle Scholar
  52. 52.
    Sonke, J.J., Lebesque, J., van Herk, M.: Variability of four-dimensional computed tomography patient models. Int. J. Radiat. Oncol. Biol. Phys. 70(2), 590–598 (2008)CrossRefGoogle Scholar
  53. 53.
    Sonke, J.J., Rossi, M., Wolthaus, J., van Herk, M., Damen, E., Belderbos, J.: Frameless stereotactic body radiotherapy for lung cancer using four-dimensional cone beam CT guidance. Int. J. Radiat. Oncol. Biol. Phys. 74(2), 567–574 (2009)CrossRefGoogle Scholar
  54. 54.
    Sonke, J.J., Zijp, L., Remeijer, P., van Herk, M.: Respiratory correlated cone beam CT. Med. Phys. 32(4), 1176–1186 (2005)CrossRefGoogle Scholar
  55. 55.
    Taguchi, K., Kudo, H.: Motion compensated fan-beam reconstruction for nonrigid transformation. IEEE Trans. Med. Imaging 27(7), 907–917 (2008)CrossRefGoogle Scholar
  56. 56.
    Thompson, B., Hugo, G.: Quality and accuracy of cone beam computed tomography gated by active breathing control. Med. Phys. 35(12), 5595–5608 (2008)CrossRefGoogle Scholar
  57. 57.
    Tuy, H.: An inversion formula for cone-beam reconstruction. SIAM J. Appl. Math. 43, 91–100 (1983)MathSciNetCrossRefGoogle Scholar
  58. 58.
    van Herk, M.: Different styles of image-guided radiotherapy. Semin. Radiat. Oncol. 17(4), 258–267 (2007)CrossRefGoogle Scholar
  59. 59.
    Vandemeulebroucke, J., Kybic, J., Clarysse, P., Sarrut, D.: Respiratory motion estimation from cone-beam projections using a prior model. Med. Image Comput. Comput. Assist. Interv. 12(Pt 2), 365–372 (2009)Google Scholar
  60. 60.
    Wertz, H., Stsepankou, D., Blessing, M., Rossi, M., Knox, C., Brown, K., Gros, U., Boda-Heggemann, J., Walter, C., Hesser, J., Lohr, F., Wenz, F.: Fast kilovoltage/megavoltage (kVMV) breathhold cone-beam CT for image-guided radiotherapy of lung cancer. Phys. Med. Biol. 55(15), 4203–4217 (2010)CrossRefGoogle Scholar
  61. 61.
    Zeng, R., Fessler, J., Balter, J.: Respiratory motion estimation from slowly rotating X-ray projections: theory and simulation. Med. Phys. 32(4), 984–991 (2005)CrossRefGoogle Scholar
  62. 62.
    Zeng, R., Fessler, J., Balter, J.: Estimating 3-D respiratory motion from orbiting views by tomographic image registration. IEEE Trans. Med. Imaging 26(2), 153–163 (2007)CrossRefGoogle Scholar
  63. 63.
    Zhang, Q., Hu, Y.C., Liu, F., Goodman, K., Rosenzweig, K., Mageras, G.: Correction of motion artifacts in cone-beam CT using a patient-specific respiratory motion model. Med. Phys. 37(6), 2901–2909 (2010)CrossRefGoogle Scholar
  64. 64.
    Zijp, L., Sonke, J.J., van Herk, M.: Extraction of the respiratory signal from sequential thorax cone-beam X-ray images. In: International Conference on the Use of Computers in Radiation Therapy (ICCR), pp. 507–509. Jeong Publishing, Seoul (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Université de Lyon, CREATIS, CNRS UMR5220; Inserm U1044, INSA-Lyon, Université Lyon 1, Centre Léon BérardLyonFrance
  2. 2.Department of Radiation OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands

Personalised recommendations