Towards a Realistic Clinical-Guidelines Application Framework: Desiderata, Applications, and Lessons Learned

  • Erez Shalom
  • Iliya Fridman
  • Yuval Shahar
  • Avner Hatsek
  • Eitan Lunenfeld
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7738)


Clinicians can benefit from automated support to guideline (GL) application at the point of care. However, several conceptual dimensions should be considered for a realistic application: 1) The representation of the knowledge might be through structured text (semi-formal), or specified in a machine-comprehensible language (formal); 2) The availability of electronic patient data might be partial or full; 3) GL-based recommendations might be triggered by a human-initiated (synchronous) session, or data–driven (asynchronous). In addition, several requirements must be fulfilled, such as an evaluation of the GL application engine by a GL simulation engine. Finally, to apply multiple GLs, by multiple users, in multiple settings, the GL-application engine should be designed as an enterprise architecture that can plug into any Electronic Medical Record (EMR). We present an architecture fulfilling these desiderata, describe application examples with different conceptual dimensions and requirements, using our new GL-application engine, PICARD, discuss lessons learned, and briefly describe a clinical evaluation of the current framework in the domain of pre-eclampsia/toxemia of pregnancy.


Clinical Guidelines Automatic Application Telemedicine Medical Decision Support Systems Evaluation knowledge Representation Simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Qualigini, S., Ciccarese, P., Micieli, G., Cavallini, A.: Non-compliance with guidelines: motivations and consequences in a case study. In: Proceedings of Symposium on Computerized Guidelines and Protocols (CGP 2004), Studies in Health Technology and Informatics, Prague, Czech Republic, vol. 101, pp. 75–87. IOS Press (2004)Google Scholar
  2. 2.
    Peleg, M., Tu, S.W., Bury, J., Ciccarese, P., Fox, J., Greenes, R.A., Hall, R., Johnson, P.D., Jones, N., Kumar, A., Miksch, S., Quaglini, S., Seyfang, A., Shortliffe, E.H., Stefanelli, M.: Comparing Computer-Interpretable Guideline Models: A Case-Study Approach. JAMIA 10(1), 52–68 (2002)Google Scholar
  3. 3.
    De Clercq, P.A., Blom, J.A., Korsten, H.H., Hasman, A.: Approaches for creating computer-interpretable guidelines that facilitate decision support. J. Artif. Intell. Med. 31(1), 1–27 (2004)CrossRefGoogle Scholar
  4. 4.
    Isern, D., Moreno, A.: Computer-based execution of clinical guidelines: a review. Int. J. Med. Inform. 77(12), 787–808 (2008)CrossRefGoogle Scholar
  5. 5.
    Fox, J., Glasspool, D., Grecu, D., Modgil, S., South, M., Patkar, V.: Argumentation-Based Inference and Decision Making - A Medical Perspective. IEEE Intelligent Systems 22, 34–41 (2007)CrossRefGoogle Scholar
  6. 6.
    Latoszek-Berendsen, A., Tange, H., van den Herik, H.J., Hasman, A.: From clinical practice guidelines to computer-interpretable guidelines. A literature overview. J. Methods Inf. Med. 49(6), 550–570 (2010)CrossRefGoogle Scholar
  7. 7.
    Anselma, L., Terenziani, P., Montani, S., Bottrighi, A.: Towards a comprehensive treatment of repetitions, periodicity and temporal constraints in clinical guidelines. J. Artif. Intell. Med. 38(2), 171–195 (2006)CrossRefGoogle Scholar
  8. 8.
    Goud, R., Hasman, A., Peek, N.: Development of a guideline-based decision support system with explanation facilities for outpatient therapy. Comput. eMethods Programs Biomed. 91(2), 145–153 (2008)CrossRefGoogle Scholar
  9. 9.
    Peleg, M., Shachak, A., Wang, D., Karnieli, E.: Using multi-perspective methodologies to study users’ interactions with the prototype front end of a guideline-based decision support system for diabetic foot care. Int. J. Med. Inform. 78(7), 482–493 (2009)CrossRefGoogle Scholar
  10. 10.
    Wang, D., Peleg, M., Tu, S.W., Boxwala, A.A., Ogunyemi, O., Zeng, Q., Greenes, R.A., Patel, V.L., Shortliffe, E.H.: Design and implementation of the GLIF3 guideline execution engine. J. Biomed. Inform. 37(5), 305–318 (2004)CrossRefGoogle Scholar
  11. 11.
    Young, O., Shahar, Y., Liel, Y., Lunenfeld, E., Bar, G., Shalom, E., Martins, S.B., Vaszar, L.T., Marom, T., Goldstein, M.K.: Runtime application of Hybrid-Asbru clinical guidelines. J. Biomed. Inform. 40(5), 507–526 (2007)CrossRefGoogle Scholar
  12. 12.
    Chan, A.S., Coleman, R.W., Martins, S.B., Advani, A., Musen, M.A., Bosworth, H.B., Oddone, E.Z., Shlipak, M.G., Hoffman, B.B.: Evaluating provider adherence in a trial of a guideline-based decision support system for hypertension. Stud. Health Technol. Inform. 107(Pt 1), 125–129 (2007)Google Scholar
  13. 13.
    Fox, J., Patkar, V., Thomson, R.: Decision Support for Healthcare: the PROforma evidence base. Inf. Prim. Care 14(1), 49–54 (2006)Google Scholar
  14. 14.
    De Clercq, P.A., Hasman, A., Blom, J.A., Korsten, H.H.: Design and implementation of a framework to support the development of clinical guidelines. Int. J. Med. Inform. 64(2-3), 285–318 (2001)CrossRefGoogle Scholar
  15. 15.
    Tu, S.W., Campbell, J.R., Glasgow, J., et al.: The SAGE Guideline Model: Achievements and overview. J. Am. Med. Inform. Assoc. 14(5), 589–598 (2007)CrossRefGoogle Scholar
  16. 16.
    Seyfang, A., Paesold, M., Votruba, P., Miksch, S.: Improving the execution of clinical guidelines and temporal data abstraction high-frequency domains. Stud. Health Technol. Inform. 139, 263–272 (2008)Google Scholar
  17. 17.
    Eccher, C., Seyfang, A., Ferro, A., Miksch, S.: Embedding oncologic protocols into the provision of care: the Oncocure project. Stud. Health Technol. Inform. 150, 663–667 (2009)Google Scholar
  18. 18.
    Choi, J., Currie, L.M., Wang, D., Bakken, S.: Encoding a clinical practice guideline using guideline interchange format: a case study of a depression screening and management guideline. Int. J. Med. Inform. 76(suppl. 2), S302–S307 (2007)Google Scholar
  19. 19.
    Grando, A., Peleg, M., Glasspool, D.: A goal-oriented framework for specifying clinical guidelines and handling medical errors. J. Bio. Inform. 43(2), 287–299 (2010)CrossRefGoogle Scholar
  20. 20.
    Isern, D., Moreno, A., Sanchez, D., Hajnal, A., Pedone, G., Varga, L.Z.: Agent-based execution of personalised home care treatments. J. App. Intelligence 34, 155–180 (2011)CrossRefGoogle Scholar
  21. 21.
    Isern, D., Senchez, D., Moreno, A.: Ontology-driven execution of clinical guidelines. Comput. Meth. Prog. Biomed. (2011), doi:10.1016/j.cmpb.2011.06.006Google Scholar
  22. 22.
    Shahar, Y., Miksch, S., Johnson, P.: The Asgaard project: A task-specific framework for the application and critiquing of time-oriented clinical guidelines. Artif. Intell. Med. (14), 29–51 (1998)Google Scholar
  23. 23.
  24. 24.
    Shahar, Y., Young, O., Shalom, E., Galperin, M., Mayaffit, A., Moskovitch, R., Hessing, A.: A framework for a distributed, hybrid, multiple-ontology clinical-guideline library and automated guideline-support tools. J. Biomed. Inform. 37(5), 325–344 (2004)CrossRefGoogle Scholar
  25. 25.
    Hatsek, A., Shahar, Y., Taieb-Maimon, M., Shalom, E., Klimov, D., Lunenfeld, E.: A Scalable Architecture for Incremental Specification and Maintenance of Procedural and Declarative Clinical Decision-Support Knowledge. The Open Medical Informatics Journal 4, 255–277 (2010)CrossRefGoogle Scholar
  26. 26.
    Shalom, E., Shahar, Y., Taieb-Maimon, M., Bar, G., Young, O., Martins, B.S., Vaszar, L., Liel, Y., Leibowitz, A., Marom, T., Lunenfeld, E.: A quantitative evaluation of a methodology for collaborative specification of clinical guidelines at multiple representation levels. Journal of Biomedical Informatics 41(6) (2008)Google Scholar
  27. 27.
    Boaz, D., Shahar, Y.: A framework for distributed mediation of temporal-abstraction queries to clinical databases. Artificial Intelligence in Medicine 34(1), 3–24 (2005)CrossRefGoogle Scholar
  28. 28.
    German, E., Leibowitz, A., Shahar, Y.: An architecture for linking medical decision-support applications to clinical databases and its evaluation. JBI 42(2), 203–218 (2009)Google Scholar
  29. 29.
    Shalom, E.: A multi-dimensional framework for realistic application of clinical guidelines. Ph.D. Thesis Dissertation, Department of Information Systems Engineering, Ben Gurion University, Beer Sheva, Israel (submitted, 2012)Google Scholar
  30. 30.
    Friedman, I., Shalom, E., Shahar, Y.: Evaluation of guideline-application engines by longitudinal simulation: A position paper. In: Proceedings of the 3rd International Workshop on Knowledge Representation for Health Care (KR4HC 2011), Bled, Slovenia (2011)Google Scholar
  31. 31.
    MobiGuide FP7 EU project (FP7-287811) (2012),

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Erez Shalom
    • 1
  • Iliya Fridman
    • 1
  • Yuval Shahar
    • 1
  • Avner Hatsek
    • 1
  • Eitan Lunenfeld
    • 2
  1. 1.Medical Informatics Research Center, Department of Information Systems EngineeringBen Gurion University of the NegevBeer-ShevaIsrael
  2. 2.Soroka Medical Center, Department of OB/GYN, Faculty of Health SciencesBen Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations