An Approach for Representing and Managing Medical Exceptions in Care Pathways Based on Temporal Hierarchical Planning Techniques

  • Inmaculada Sánchez-Garzón
  • Juan Fdez-Olivares
  • Luis Castillo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7738)


This work presents an approach for representing and managing medical exceptions that may occur during the execution of a patient-centered care pathway. Personalized care pathways are generated automatically by means of a knowledge-driven planning process over a temporal hierarchical task network (HTN), which encodes an evidence-based clinical guideline. The exceptional situations specified in this guideline as well as the recommendations for their management are represented by knowledge-based rules in the task network model. However these rules, which encode the exceptional flow of the guideline, are represented separately from the normal flow in order to not obscure the modelling. Moreover, we propose the use of medical concepts from a standard terminology (UMLS) for the formal representation of these rules. This fact promotes interoperability, knowledge sharing and precision aspects. Finally, a therapy planning system with capabilities for exception detection, analysis and adaptation has been developed. As a result, the proposal, which is evaluated with oncology care plans, seems to be an adequate exception recovery mechanism maintaining guideline adherence.


Computer-interpretable clinical protocols personalization and adaptation exception handling care pathway interoperability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Campbell, H., Hotchkiss, R., Bradshaw, N., Porteous, M.: Integrated care pathways. British Medical Journal 316(7125), 133–137 (1998)CrossRefGoogle Scholar
  2. 2.
    van Merode, G., Groothuis, S., Hasman, A.: Enterprise resource planning for hospitals. review. Int. J. of Medical Informatics 73(6), 493–501 (2004)CrossRefGoogle Scholar
  3. 3.
    Fdez-Olivares, J., Castillo, L., Cózar, J.A., García-Pérez, O.: Supporting clinical processes and decisions by hierarchical planning and scheduling. Comp. Intelligence 27, 103–122 (2011)CrossRefGoogle Scholar
  4. 4.
    González-Ferrer, A., ten Teije, A., Fdez-Olivares, J., Milian, K.: Automated generation of patient-tailored care pathways by translating computer-interpretable guidelines into hierarchical task networks. In: Artificial Intelligence In Medicine (to appear, 2012)Google Scholar
  5. 5.
    Peleg, M., Tu, S., Bury, J., Ciccarese, P., Fox, J., Greenes, R.A., Hall, R., Johnson, P.D., Jones, N., Kumar, A., Miksch, S., Quaglini, S., Seyfang, A., Shortliffe, E.H., Stefanelli, M.: Comparing computer-interpretable guideline models: A case-study approach. J. Am. Med. Inform. Assoc. 10(1), 5268 (2003)CrossRefGoogle Scholar
  6. 6.
    Castillo, L., Fdez-Olivares, J., García-Pérez, O., Palao, F.: Efficiently handling temporal knowledge in an HTN planner. In: Proc. of ICAPS 2006, pp. 63–72 (2006)Google Scholar
  7. 7.
    Han, M., Thiery, T., Song, X.: Managing exceptions in the medical workflow systems. In: Proc. of the 28th International Conference on Software Engineering, pp. 741–750 (2006)Google Scholar
  8. 8.
    Peleg, M., Somekh, J., Dori, D.: A methodology for eliciting and modeling exceptions. Biomedical Informatics Journal 42, 736–747 (2009)CrossRefGoogle Scholar
  9. 9.
    Klein, M., Dellarocas, C.: A knowledge-based approach to handling exceptions in workflow systems. Computer Supported Cooperative Work 9, 399–412 (2000)CrossRefGoogle Scholar
  10. 10.
    Casati, F., Cugola, G.: Error Handling in Process Support Systems. In: Romanovsky, A., Cheraghchi, H.S., Lindskov Knudsen, J., Babu, C. S. (eds.) Exception Handling. LNCS, vol. 2022, pp. 251–270. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Fdez-Olivares, J., Sánchez-Garzón, I., González-Ferrer, A., Cózar, J.A., Fdez-Teijeiro, A., Cabello, M.R., Castillo, L.: Task Network Based Modeling, Dynamic Generation and Adaptive Execution of Patient-Tailored Treatment Plans Based on Smart Process Management Technologies. In: Riaño, D., ten Teije, A., Miksch, S. (eds.) KR4HC 2011. LNCS, vol. 6924, pp. 37–50. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Guzmán, C., Alcázar, V., Prior, D., Onaindia, E., Borrajo, D., Fdez-Olivares, J., Quintero, E.: PELEA: a domain-independen architecture for planning, execution and learning. In: Scheduling and Planning Applications woRKshop. ICAPS Conf. (2012)Google Scholar
  13. 13.
    Miksch, S., Seyfang, A.: Continual planning with time-oriented, skeletal plans. In: Proc. of ECAI (2000)Google Scholar
  14. 14.
    Institute of Medicine: Patient Safety: Achieving a New Standard for Care. National Academy Press, Washington, D.C. (2004)Google Scholar
  15. 15.
    Palao, F., Fdez-Olivares, J., Castillo, L., García, O.: An extended HTN knowledge representation based on a graphical notation. In: Workshop on Knowledge Engineering for Planning and Scheduling. ICAPS Conf., pp. 126–135Google Scholar
  16. 16.
    Milla-Millán, G., Fdez-Olivares, J., Sánchez-Garzón, I., Prior, D., Castillo, L.: Knowledge-Driven Adaptive Execution of Care Pathways Based on Continuous Planning Techniques. In: Lenz, R., Miksch, S., Peleg, M., Reichert, M., Riaño, D., ten Teije, A. (eds.) ProHealth 2012/KR4HC 2012. LNCS (LNAI), vol. 7738, pp. 42–55. Springer, Heidelberg (2012)Google Scholar
  17. 17.
    de Clercq, P., Blom, J., Korsten, H., Hasman, A.: Approaches for creating computer-interpretable guidelines that facilitate decision support. Artif. Intell. Med. 31(1), 1–27 (2004)CrossRefGoogle Scholar
  18. 18.
    Mulyar, N., Pesic, M., van der Aalst, W.M.P., Peleg, M.: Declarative and Procedural Approaches for Modelling Clinical Guidelines: Addressing Flexibility Issues. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM 2007 Workshops. LNCS, vol. 4928, pp. 335–346. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Grando, A., Peleg, M., Glasspool, D.: A goal-oriented framework for specifying clinical guidelines and handling medical errors. Biomedical Informatics Journal 43, 287–299 (2010)CrossRefGoogle Scholar
  20. 20.
    Luo, Z., Kochut, K., Sheth, A., Miller, J.: Exception handling in workflow systems. Applied Intelligence 13, 125–147 (2000)CrossRefGoogle Scholar
  21. 21.
    Greiner, U., Müller, R., Rahm, E., Ramsch, J., Heller, B., Loeffler, M.: AdaptFlow: Protocol-based medical treatment using adaptative workflows. Methods of Information in Medicine 44, 80–88 (2005)Google Scholar
  22. 22.
    Müller, R., Greiner, U., Rahm, E.: AgentWork: a workflow system supporting rule-based workflow adaptation. Data and Knowledge Eng. 51, 223–256 (2004)CrossRefGoogle Scholar
  23. 23.
    Alexandrou, D.A., Skitsas, I.E., Mentzas, G.N.: A holistic environment for the design and execution of self-adaptive clinical pathways. In: Information Technology and Applications in Biomedicine Conference (ITAB), pp. 1–5 (2009)Google Scholar
  24. 24.
    Dadam, P., Reichert, M.: The ADEPT project: a decade of research and development for robust and flexible process support. Challenges and achievements. Computer Science. Research and Development 23(2), 81–97 (2009)CrossRefGoogle Scholar
  25. 25.
    Ayan, N.F., Kuter, U., Yaman, F., Goldman, R.P.: HOTRiDE: Hierarchical ordered task replanning in dynamic enviroments. In: Proc. of ICAPS (2007)Google Scholar
  26. 26.
    Warfield, I., Hogg, C., Lee-Urban, S., Muñoz Avila, H.: Adaptation of hierarchical task network plans. In: Proc. of FLAIRS, pp. 429–434 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Inmaculada Sánchez-Garzón
    • 1
  • Juan Fdez-Olivares
    • 1
  • Luis Castillo
    • 2
  1. 1.Department of Computer Science and A.I.University of GranadaSpain
  2. 2.IActive Intelligent SolutionsSpain

Personalised recommendations