Advertisement

The Elicitation, Representation, Application, and Automated Discovery of Time-Oriented Declarative Clinical Knowledge

  • Yuval Shahar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7738)

Abstract

Monitoring, interpretation, and analysis of large amounts of time-stamped clinical data are tasks that are at the core of tasks such as the management of chronic patients using clinical guidelines, the retrospective assessment of the quality of that application, or the related task of clinical research by learning new knowledge from the accumulating data. I briefly describe several conceptual and computational architectures developed over the past 20 years, mostly by my research teams at Stanford and Ben Gurion universities, for knowledge-based performance of these tasks, and highlight the complex and interesting relationships amongst them. Examples of such architectures include the IDAN goal-directed temporal-mediation and the Momentum data-driven monitoring architectures, both of which are based on the knowledge-based temporal-abstraction method; the KNAVE-II and VISITORS knowledge-based interactive-exploration frameworks for single and multiple longitudinal records; and the KarmaLego interval-based temporal data mining methodology. I point out the progression from individual-subject data-interpretation, monitoring, and therapy, to multiple-patient aggregate analysis and research, and finally to the discovery and learning of new knowledge. This progression can be viewed as a positive-feedback loop, in which new knowledge is brought back to bear upon both individual-patient management and on the learning of new and meaningful (temporal) associations.

Keywords

Knowledge Representation Knowledge Acquisition Temporal Reasoning Temporal Abstraction Temporal Data Mining Information Visualization Medical Decision-Support Systems Guideline-based care 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shahar, Y.: A framework for knowledge-based temporal abstraction. Artificial Intelligence 90(1-2), 79–133 (1997)zbMATHCrossRefGoogle Scholar
  2. 2.
    Shahar, Y., Musen, M.A.: RÉSUMÉ: A temporal-abstraction system for patient monitoring. Computers and Biomedical Research 26, 255–273 (1993); Reprinted in van Bemmel, J.H., McRay, A.T. (eds.) Yearbook of Medical Informatics 1994, pp. 443–461. F.K. Schattauer and The International Medical Informatics Association, Stuttgart (1994)Google Scholar
  3. 3.
    Shahar, Y., Musen, M.A.: Knowledge-based temporal abstraction in clinical domains. Artificial Intelligence in Medicine 8(3), 267–298 (1996)CrossRefGoogle Scholar
  4. 4.
    Kuilboer, M.M., Shahar, Y., Wilson, D.M., Musen, M.A.: Knowledge reuse: Temporal-abstraction mechanisms for the assessment of children’s growth. In: Proceedings of the Seventeenth Annual Symposium on Computer Applications in Medical Care, Washington, DC, pp. 449–453 (1993)Google Scholar
  5. 5.
    Shahar, Y., Das, A.K., Tu, S.W., Kraemer, F.B., Musen, M.A.: Knowledge-based temporal abstraction for diabetic monitoring. In: Proceedings of the Eighteenth Annual Symposium on Computer Applications in Medical Care, Washington, DC, pp. 697–701 (1994)Google Scholar
  6. 6.
    Keravnou, E., Shahar, Y.: Temporal reasoning in medicine. In: Vila, L., Van Beek, P., Fisher, M., Boddy, M., Galton, A., Morris, R., Nebel, B. (eds.) The Handbook of Time and Temporal Reasoning in Artificial Intelligence, pp. 587–653. MIT Press, Cambridge (2005)CrossRefGoogle Scholar
  7. 7.
    Combi, C., Keravnou, E., Shahar, Y.: Temporal Information Systems in Medicine. Springer, New York (2010)CrossRefGoogle Scholar
  8. 8.
    Shahar, Y.: Dynamic temporal interpretation contexts for temporal abstraction. Annals of Mathematics and Artificial Intelligence 22(1-2), 159–192 (1998)zbMATHCrossRefGoogle Scholar
  9. 9.
    Chakravarty, S., Shahar, Y.: A constraint-based specification of periodic patterns in time-oriented data. Annals of Mathematics and Artificial Intelligence 30(1-4) (2000)Google Scholar
  10. 10.
    Chakravarty, S., Shahar, Y.: Specification and detection of periodicity in clinical data. Methods of Information in Medicine 40(5), 410–420 (2001); Reprinted in: Haux, R., Kulikowski, C. (eds.) Yearbook of Medical Informatics 2003, pp. 296–306. F.K. Schattauer and The International Medical Informatics Association, Stuttgart (2003)Google Scholar
  11. 11.
    Anselma, L., Terenziani, P., Montani, S., Bottrighi, A.: Towards a comprehensive treatment of repetitions, periodicity and temporal constraints in clinical guidelines. J. Artif. Intell. Med. 38(2), 171–195 (2006)CrossRefGoogle Scholar
  12. 12.
    Shoham, Y.: Temporal logics in AI: Semantical and ontological considerations. Artificial Intelligence 33(1), 89–104 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Shahar, Y.: Knowledge-based temporal interpolation. Journal of Experimental and Theoretical Artificial Intelligence 11, 123–144 (1999)zbMATHCrossRefGoogle Scholar
  14. 14.
    Ramati, M., Shahar, Y.: Irregular-time Bayesian networks. In: Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence (UAI 2010), Catalina Island, CA, USA (2010)Google Scholar
  15. 15.
    Shahar, Y., Chen, H., Stites, D., Basso, L., Kaizer, H., Wilson, D., Musen, M.A.: Semiautomated acquisition of clinical temporal-abstraction knowledge. Journal of the American Medical Informatics Association 6(6), 494–511 (1999)CrossRefGoogle Scholar
  16. 16.
    Hatsek, A., Shahar, Y., Taieb-Maimon, M., Shalom, E., Klimov, D., Lunenfeld, E.: A Scalable Architecture for Incremental Specification and Maintenance of Procedural and Declarative Clinical Decision-Support Knowledge. The Open Medical Informatics Journal 4, 255–277 (2010)CrossRefGoogle Scholar
  17. 17.
    Shalom, E., Shahar, Y., Taieb-Maimon, M., Bar, G., Young, O., Martins, B.S., Vaszar, L., Liel, Y., Leibowitz, A., Marom, T., Lunenfeld, E.: A Quantitative Evaluation of a Methodology for Collaborative Specification of Clinical Guidelines at Multiple Representation Levels. Journal of Biomedical Informatics 41(6) (2008)Google Scholar
  18. 18.
    Shalom, E., Shahar, Y., Taieb-Maimon, M., Martins, S.B., Vaszar, L.T., Goldstein, Gutnik, L., Lunenfeld, E.: Ability of expert physicians to structure clinical guidelines: Reality versus perception. Journal of Evaluation in Clinical Practice 15, 1043–1053 (2009)CrossRefGoogle Scholar
  19. 19.
    Nguyen, J., Shahar, Y., Tu, S.W., Das, A.K., Musen, M.A.: Integration of temporal reasoning and temporal-data maintenance into a reusable database mediator to answer abstract, time-oriented queries: The Tzolkin System. Journal of Intelligent Information Systems 13(1/2), 121–145 (1999)CrossRefGoogle Scholar
  20. 20.
    Boaz, D., Shahar, Y.: A framework for distributed mediation of temporal-abstraction queries to clinical databases. Artificial Intelligence in Medicine 34(1), 3–24 (2005)CrossRefGoogle Scholar
  21. 21.
    German, E., Leibowitz, A., Shahar, Y.: An architecture for linking medical decision-support applications to clinical databases and its evaluation. J. Biomed. Inform. 42(2), 203–218 (2009)CrossRefGoogle Scholar
  22. 22.
    Peleg, M., Keren, S., Denekamp, Y.: Mapping Computerized Clinical Guidelines to Electronic Medical Records: Knowledge-Data Ontological Mapper (KDOM). Journal of Biomedical Informatics 41(1), 180–201 (2008)CrossRefGoogle Scholar
  23. 23.
    Spokoiny, A., Shahar, Y.: Incremental application of knowledge to continuously arriving time-oriented raw data. The Journal of Intelligent Information Systems 31(1), 1–33 (2008)CrossRefGoogle Scholar
  24. 24.
    Spokoiny, A., Shahar, Y.: An active database architecture for knowledge-based incremental abstraction of complex concepts from continuously arriving time-oriented raw data. The Journal of Intelligent Information Systems 28(3), 199–231 (2007)CrossRefGoogle Scholar
  25. 25.
    Combi, C., Shahar, Y.: Temporal reasoning and temporal data maintenance in medicine: Issues and challenges. Computers in Biology and Medicine 27(5), 353–368 (1997)CrossRefGoogle Scholar
  26. 26.
    Shalom, E., Fridman, I., Shahar, Y., Hatsek, A., Lunenfeld, E.: Towards a Realistic Clinical-Guidelines Application Framework: Desiderata, Applications, and Lessons Learned. In: Lenz, R., Miksch, S., Peleg, M., Reichert, M., Riaño, D., ten Teije, A. (eds.) ProHealth 2012/KR4HC 2012. LNCS (LNAI), vol. 7738, pp. 56–70. Springer, Heidelberg (2012)Google Scholar
  27. 27.
    Shahar, Y., Molina, M.: Knowledge-based spatiotemporal linear abstraction. Pattern Analysis and Applications 1(2), 91–104 (1998)zbMATHCrossRefGoogle Scholar
  28. 28.
    Shabtai, A., Fledel, Y., Elovici, Y., Shahar, Y.: Using the KBTA method for inferring computer and network security alerts from time-stamped, raw system metrics. Journal in Computer Virology (2009)Google Scholar
  29. 29.
    Shabtai, A., Shahar, Y., Elovici, Y.: A distributed architecture for efficient parallelization and computation of knowledge-based temporal abstractions. The Journal of Intelligent Information Systems 37(3), 1–38 (2011)Google Scholar
  30. 30.
    Aigner, W., Miksch, S., Schumann, H., Tominski, C.: Visualization of time-oriented data. Springer, Berlin (2011)CrossRefGoogle Scholar
  31. 31.
    Shahar, Y., Cheng, C.: Model-based visualization of temporal abstractions. Computational Intelligence 16(2), 279–306 (2000)CrossRefGoogle Scholar
  32. 32.
    Shahar, Y., Goren-Bar, D., Boaz, D., Tahan, G.: Distributed, intelligent, interactive visualization and exploration of time-oriented clinical data. Artificial Intelligence in Medicine 38(2), 115–135 (2006)CrossRefGoogle Scholar
  33. 33.
    Martins, S.B., Shahar, Y., Goren-Bar, D., Galperin, M., Kaizer, H., Basso, L.V., McNaughton, D., Goldstein, M.K.: Evaluation of an architecture for intelligent query and exploration of time-oriented clinical data. Artificial Intelligence in Medicine 43, 17–34 (2008)CrossRefGoogle Scholar
  34. 34.
    Klimov, D., Shahar, Y., Taieb-Maimon, M.: Intelligent querying, visualization, and exploration of the time-oriented data of multiple patients. Artificial Intelligence in Medicine 49, 11–31 (2010)CrossRefGoogle Scholar
  35. 35.
    Klimov, D., Shahar, Y., Taieb-Maimon, M.: Intelligent selection and retrieval of multiple time-oriented records. The Journal of Intelligent Information Systems 35, 261–300 (2010)CrossRefGoogle Scholar
  36. 36.
    Klimov, D., Shahar, Y., Taieb-Maimon, M.: Intelligent visualization of temporal associations for multiple time-oriented patient records. Methods of Information in Medicine 48(3), 254–262 (2009)CrossRefGoogle Scholar
  37. 37.
    Shalom, E., Klimov, D., Shahar, Y., Kudish, S., Borer, A., Livshitz-Riven, I., Askira, S., Gurevitz, I., Burshtein, O., Rakover, I.: A decision-support system for monitoring infections in the infection-prevention unit at the Soroka Medical Center. In: Proceedings of the 2011 Annual Meeting of the Israeli Medical Informatics Association (ILAMI), Tel Aviv, Israel (2011) (Best Abstract and Presentation Award)Google Scholar
  38. 38.
    Sacchi, L., Larizza, C., Combi, C., Bellazi, R.: Data mining with temporal abstractions: learning rules from time series. Data Mining and Knowledge Discovery (15), 217–247 (2007)Google Scholar
  39. 39.
    Moskovitch, R., Peek, N., Shahar, Y.: Classification of ICU patients via temporal abstraction and temporal patterns mining. In: Notes of the Intelligent Data Analysis in Medicine and Pharmacology (IDAMAP 2009) Workshop, Verona, Italy, pp. 35–40 (2009)Google Scholar
  40. 40.
    Moskovitch, R., Shahar, Y.: Medical temporal-knowledge discovery via temporal abstraction. In: Proceedings of the 2009 AMIA Annual Fall Symposium, Washington, DC (2009)Google Scholar
  41. 41.
    Allen, J.F.: Towards a general theory of action and time. Artificial Intelligence 23(2), 123–154 (1984)zbMATHCrossRefGoogle Scholar
  42. 42.
    Buchanan, B.G., Shortliffe, E.H. (eds.): Rule Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project. Addison-Wesley, Reading (1984)Google Scholar
  43. 43.
    Miller, R.A., Pople, H.E., Myers, J.D.: INTERNIST-I, an experimental computer-based diagnostic consultant for general internal medicine. NewEngland Journal of Medicine 307, 468–476 (1982)CrossRefGoogle Scholar
  44. 44.
    Fagan, L.M.: VM: Representing Time-Dependent Relations in a Medical Setting. Ph.D. dissertation, Department of Computer Science, Stanford University, Stanford, CA (1980) Google Scholar
  45. 45.
    Fagan, L.M., Kunz, J.C., Feigenbaum, E.A., Osborn, J.J.: Extensions to the rule-based formalism for a Monitoring task. In: Buchanan, B.G., Shortliffe, E.H. (eds.) Rule Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project, pp. 397–423. Addison-Wesley, Reading (1984)Google Scholar
  46. 46.
    Downs, S.M., Walker, M.G., Blum, R.L.: Automated summarization of on-line medical records. In: Salamon, R., Blum, B., Jorgensen, M. (eds.) MEDINFO 1986: Proceedings of the Fifth Conference on Medical Informatics, pp. 800–804. North-Holland, Amsterdam (1986)Google Scholar
  47. 47.
    De Zegher-Geets, I.M.: IDEFIX: Intelligent summarization of a time oriented medical database. M.Sc. Dissertation, Medical Information Sciences Program, Stanford University School of Medicine. Knowledge Systems Laboratory Technical Report KSL–88-34, Department of Computer Science, Stanford University, Stanford, CA (June 1987) Google Scholar
  48. 48.
    De Zegher-Geets, I.M., Freeman, A.G., Walker, M.G., Blum, R.L., Wiederhold, G.: Summarization and display of on-line medical records. M.D. Computing 5, 38–46 (1988)Google Scholar
  49. 49.
    Russ, T.A.: Use of data abstraction methods to simplify monitoring. Artificial Intelligence in Medicine 7, 497–514 (1995)CrossRefGoogle Scholar
  50. 50.
    Kahn, M.G.: Combining physiologic models and symbolic methods to interpret time-varying patient data. Methods of Information in Medicine 30, 167–178 (1991)Google Scholar
  51. 51.
    Kahn, M.G.: Extensions to the time-oriented database model to support temporal reasoning in medical expert systems. Methods of Information in Medicine 30, 4–14 (1991)Google Scholar
  52. 52.
    Kahn, M.G.: Modeling time in medical decision support programs. Medical Decision Making 11, 249–264 (1991)CrossRefGoogle Scholar
  53. 53.
    Kahn, M.G.: TQuery: A context-sensitive temporal query language. Computers and Biomedical Research 24, 401–419 (1991)CrossRefGoogle Scholar
  54. 54.
    Haimowitz, I.J., Kohane, I.S.: An epistemology for clinically significant trends. In: Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 176–181. AAAI Press, Menlo Park (1993)Google Scholar
  55. 55.
    Haimowitz, I.J., Kohane, I.S.: Automated trend detection with alternate temporal hypotheses. In: Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, pp. 146–151. Morgan Kaufmann, San Mateo (1993)Google Scholar
  56. 56.
    Kohane, I.S., Haimowitz, I.J.: Hypothesis-driven data abstraction with trend templates. In: Proceedings of the Seventeenth Annual Symposium on Computer Applications in Medicine, Washington, DC, pp. 444–448 (1993)Google Scholar
  57. 57.
    Haimowitz, I.J.: Knowledge-Based Trend Detection and Diagnosis. Ph.D. Dissertation, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (1994)Google Scholar
  58. 58.
    Kohane, I.S.: Temporal reasoning in medical expert systems. Technical Report 389, Laboratory of Computer Science, Massachusetts Institute of Technology, Cambridge, MA (1987)Google Scholar
  59. 59.
    Kohane, I.S.: Temporal reasoning in medical expert systems. In: Salamon, R., Blum, B., Jorgensen, M. (eds.) MEDINFO 1986: Proceedings of the Fifth Conference on Medical Informatics, pp. 170–174. North-Holland, Amsterdam (1986)Google Scholar
  60. 60.
    Plaisant, C., Milash, B., Rose, A., Widoff, S., Shneiderman, B.: LifeLines: visualizing personal histories. In: Proceedings of ACM CHI 1996 Conference, pp. 221–227. ACM Publisher, New York (1996)Google Scholar
  61. 61.
    Plaisant, C., Mushlin, R., Snyder, A., Li, J., Heller, D., Shneiderman, B.: LifeLines: using visualization to enhance navigation and analysis of patient records. In: Proceedings of American Medical Informatics Association Annual Fall Symposium, pp. 76–80 (1998)Google Scholar
  62. 62.
    Wang, T., Plaisant, C., Quinn, A., Stanchak, R., Shneiderman, B., Murphy, S.: Aligning temporal data by sentinel events: discovering patterns in electronic health records. In: Proc. ACM Conf. on Human Factors in Computing Systems (CHI 2008), pp. 457–466. ACM Publisher, New York (2008)Google Scholar
  63. 63.
    Ayres, J., Gehrke, J., Yiu, T., Flannick, J.: Sequential PAttern Mining Using Bitmaps. In: Proceedings SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada (2002)Google Scholar
  64. 64.
    Papapetrou, P., Kollios, G., Sclaroff, S., Gunopulos, D.: Mining frequent arrangements of temporal intervals. Knowledge and Information Systems 21(2), 133–171 (2009)CrossRefGoogle Scholar
  65. 65.
    Shahar, Y.: The “Human Cli-Knowme” Project: Building a Universal, Formal, Procedural and Declarative Clinical Knowledge Base, for the Automation of Therapy and Research. In: Riaño, D., ten Teije, A., Miksch, S. (eds.) KR4HC 2011. LNCS, vol. 6924, pp. 1–22. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  66. 66.
    Boldo, I., Shahar, Y., Laor, A., Etzion, O.: Automated recognition of clinical guidelines from electronic medical records. In: Notes of the 8th International Workshop on Intelligent Data Analysis in Medicine and Pharmacology (IDAMAP 2004), Stanford, CA (2004)Google Scholar
  67. 67.
    Portet, F., Reiter, E.B., Gatt, A., Hunter, J., Sripada, G.S., Freer, Y., Sykes, C.: Automatic generation of textual summaries from neonatal intensive care data. Artificial Intelligence 173(7-8), 789–816 (2009)CrossRefGoogle Scholar
  68. 68.
    Goldstein, A., Shahar, Y.: A framework for automated knowledge-based textual summarization of longitudinal medical records. In: Proceedings of the 4th International workshop on Knowledge Representation for Health Care (KR4HC 2012), Tallinn, Estonia (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yuval Shahar
    • 1
  1. 1.Medical Informatics Research Center, Department of Information Systems EngineeringBen Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations