Skip to main content

Optical Properties of Semiconductor Nanorods

  • Chapter
  • First Online:
Physical Properties of Nanorods

Abstract

Semiconductor nanorods are an exciting material for optical applications because their absorption and emission properties can be tuned by the nanorods size, aspect ratio, and composition. In this chapter we will discuss the in detail the electronic level structure and the time dynamics of the carrier relaxation processes which determine the optical behavior of nanorods. Experiments on single nanorods of single and heterostructured materials will be reviewed that demonstrate, for example, polarized and directional emission, and tuning of the emission wavelength via the nanorod size or the Stark-effect. Furthermore coupling and collective effects in nanorod arrays will be discussed and we will highlight some promising results towards practical applications of nanorods in light emitting or lasing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmelcher P (1993) Delocalization of excitons in a magnetic-field. Phys Rev B 48(19):14642–14645

    ADS  Google Scholar 

  2. Efros AL, Rosen M (2000) The electronic structure of semiconductor nanocrystals. Annu Rev Mater Sci 30:475–521

    ADS  Google Scholar 

  3. Ekimov AI, Onushchenko AA, Efros AL (1986) JETP Lett 43:376

    ADS  Google Scholar 

  4. Ekimov AI, Efros AL, Ivanov MG, Onushchenko AA, Shumilov SK (1989) Donor-like exciton in zero-dimension semiconductor structures. Solid State Commun 69(5):565–568

    ADS  Google Scholar 

  5. Li JB, Wang LW (2003) Shape effects on electronic states of nanocrystals. Nano Lett 3(10):1357–1363

    ADS  Google Scholar 

  6. Shabaev A, Efros AL (2004) 1D exciton spectroscopy of semiconductor nanorods. Nano Lett 4(10):1821–1825

    ADS  Google Scholar 

  7. Efros AL, Rosen M, Kuno M, Nirmal M, Norris DJ, Bawendi M (1996) Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys Rev B 54(7):4843–4856

    ADS  Google Scholar 

  8. Norris DJ, Efros AL, Rosen M, Bawendi MG (1996) Size dependence of exciton fine structure in CdSe quantum dots. Phys Rev B 53(24):16347–16354

    ADS  Google Scholar 

  9. Nirmal M, Norris DJ, Kuno M, Bawendi MG, Efros AL, Rosen M (1995) Observation of the dark exciton in CdSe quantum dots. Phys Rev Lett 75(20):3728–3731

    ADS  Google Scholar 

  10. Le Thomas N, Herz E, Schops O, Woggon U, Artemyev MV (2005) Exciton fine structure in single CdSe nanorods. Phys Rev Lett 94(1):016803

    ADS  Google Scholar 

  11. Le Thomas N, Allione M, Fedutik Y, Woggon U, Artemyev MV, Ustinovich EA (2006) Multiline spectra of single CdSe/ZnS core-shell nanorods. Appl Phys Lett 89(26):263115

    ADS  Google Scholar 

  12. Lange H, Machon M, Artemyev M, Woggon U, Thomsen C (2007) Effect of ZnS shell on the Raman spectra from CdSe nanorods. Phys Stat Sol Rap Res Lett 1(6):274–276

    ADS  Google Scholar 

  13. Artemyev M, Moller B, Woggon U (2003) Unidirectional alignment of CdSe nanorods. Nano Lett 3(4):509–512

    ADS  Google Scholar 

  14. Talaat H, Abdallah T, Mohamed MB, Negm S, El-Sayed MA (2009) The sensitivity of the energy band gap to changes in the dimensions of the CdSe quantum rods at room temperature: STM and theoretical studies. Chem Phys Lett 473(4–6):288–292

    ADS  Google Scholar 

  15. Katz D, Wizansky T, Millo O, Rothenberg E, Mokari T, Banin U (2002) Size-dependent tunneling and optical spectroscopy of CdSe quantum rods. Phys Rev Lett 89(8):086801

    ADS  Google Scholar 

  16. Millo O, Katz D, Steiner D, Rothenberg E, Mokari T, Kazes M, Banin U (2004) Charging and quantum size effects in tunnelling and optical spectroscopy of CdSe nanorods. Nanotechnology 15(1):R1–R6

    ADS  Google Scholar 

  17. Hu JT, Li LS, Yang WD, Manna L, Wang LW, Alivisatos AP (2001) Linearly polarized emission from colloidal semiconductor quantum rods. Science 292(5524):2060–2063

    Google Scholar 

  18. De Giorgi M, Lingk C, von Plessen G, Feldmann J, De Rinaldis S, Passaseo A, De Vittorio M, Cingolani R, Lomascolo M (2001) Capture and thermal re-emission of carriers in long-wavelength InGaAs/GaAs quantum dots. Appl Phys Lett 79(24):3968–3970

    ADS  Google Scholar 

  19. Morello G, De Giorgi M, Kudera S, Manna L, Cingolani R, Anni M (2007) Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots. J Phys Chem C 111(16):5846–5849

    Google Scholar 

  20. Valerini D, Creti A, Lomascolo M, Manna L, Cingolani R, Anni M (2005) Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix. Phys Rev B 71(23):235409

    ADS  Google Scholar 

  21. Klimov VI, Mikhailovsky AA, McBranch DW, Leatherdale CA, Bawendi MG (2000) Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 287(5455):1011–1013

    ADS  Google Scholar 

  22. Fisher B, Caruge JM, Zehnder D, Bawendi M (2005) Room-temperature ordered photon emission from multiexciton states in single CdSe core-shell nanocrystals. Phys Rev Lett 94(8):087403

    ADS  Google Scholar 

  23. Pandey A, Guyot-Sionnest P (2007) Multicarrier recombination in colloidal quantum dots. J Chem Phys 127(11):111104

    ADS  Google Scholar 

  24. Achermann M, Hollingsworth JA, Klimov VI (2003) Multiexcitons confined within a subexcitonic volume: spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals. Phys Rev B 68(24):245302

    ADS  Google Scholar 

  25. Wang LW, Califano M, Zunger A, Franceschetti A (2003) Pseudopotential theory of Auger processes in CdSe quantum dots. Phys Rev Lett 91(5):056404

    ADS  Google Scholar 

  26. Kraus RM, Lagoudakis PG, Muller J, Rogach AL, Lupton JM, Feldmann J, Talapin DV, Weller H (2005) Interplay between auger and ionization processes in nanocrystal quantum dots. J Phys Chem B 109(39):18214–18217

    Google Scholar 

  27. Klimov VI (2000) Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J Phys Chem B 104(26):6112–6123

    Google Scholar 

  28. Achermann M, Bartko AP, Hollingsworth JA, Klimov VI (2006) The effect of Auger heating on intraband carrier relaxation in semiconductor quantum rods. Nat Phys 2(8):557–561

    Google Scholar 

  29. Htoon H, Hollingsworth JA, Dickerson R, Klimov VI (2003) Effect of zero- to one-dimensional transformation on multiparticle Auger recombination in semiconductor quantum rods. Phys Rev Lett 91(22):227401

    ADS  Google Scholar 

  30. Robel I, Bunker BA, Kamat PV, Kuno M (2006) Exciton recombination dynamics in CdSe nanowires: bimolecular to three-carrier Auger kinetics. Nano Lett 6(7):1344–1349

    ADS  Google Scholar 

  31. Liebler JG, Schmitt-Rink S, Haug H (1985) Theory of the absorption tail of wannier excitons in polar semiconductors. J Lumin 34:1–7

    Google Scholar 

  32. Takagahara T (1996) Electron-phonon interactions in semiconductor nanocrystals. J Lumin 70:129–143

    Google Scholar 

  33. Schmitt-Rink S, Miller DAB, Chemla DS (1987) Theory of the linear and nonlinear optical properties of semiconductor nanocrystallites. Phys Rev B 35:8113–8125

    ADS  Google Scholar 

  34. Nomura S, Kobayashi T (1992) Exciton-LO-phonon couplings in spherical semiconductor microcystallites. Phys Rev B 45:1305–1316

    ADS  Google Scholar 

  35. Muljarov EA, Zimmermann R (2007) Exciton dephasing in quantum dots due to LO-phonon coupling: An exactly solvable model. Phys Rev Lett 98(18):187401

    ADS  Google Scholar 

  36. Gindele F, Hild K, Langbein W, Woggon U (2000) Temperature-dependent line widths of single excitons and biexcitons. J Lumin 87–89:381–383

    Google Scholar 

  37. Rudin S, Reinecke TL, Segall B (1990) Temperature-dependent exciton linewidths in semiconductors. Phys Rev B 42(17):11218–11231

    ADS  Google Scholar 

  38. Lange H, Artemyev M, Woggon U, Niermann T, Thomsen C (2008) Experimental investigation of exciton-LO-phonon couplings in CdSe/ZnS core/shell nanorods. Phys Rev B 77(19):193303

    ADS  Google Scholar 

  39. Trallero-Giner C, Debernardi A, Cardona M, Menendez-Proupin E, Ekimov AI (1998) Optical vibrons in CdSe dots and dispersion relation of the bulk material. Phys Rev B 57(8):4664–4669

    ADS  Google Scholar 

  40. Lange H, Artemyev M, Woggon U, Thomsen C (2009) Geometry dependence of the phonon modes in CdSe nanorods. Nanotechnology 20(4):045705

    ADS  Google Scholar 

  41. Nobile C, Kudera S, Fiore A, Carbone L, Chilla G, Kipp T, Heitmann D, Cingolani R, Manna L, Krahne R (2007) Confinement effects on optical phonons in spherical, rod-, and tetrapod-shaped nanocrystals detected by Raman spectroscopy. Phys Status Solidi A-Appl Mat 204(2):483–486

    ADS  Google Scholar 

  42. Gupta R, Xiong Q, Mahan GD, Eklund PC (2003) Surface optical phonons in gallium phosphide nanowires. Nano Lett 3(12):1745–1750

    ADS  Google Scholar 

  43. Krahne R, Chilla G, Schuller C, Carbone L, Kudera S, Mannarini G, Manna L, Heitmann D, Cingolani R (2006) Confinement effects on optical phonons in polar tetrapod nanocrystals detected by resonant inelastic light scattering. Nano Lett 6(3):478–482

    ADS  Google Scholar 

  44. Klimov VI, Ivanov SA, Nanda J, Achermann M, Bezel I, McGuire JA, Piryatinski A (2007) Single-exciton optical gain in semiconductor nanocrystals. Nature 447(7143):441–446

    ADS  Google Scholar 

  45. Nanda J, Ivanov SA, Achermann M, Bezel I, Piryatinski A, Klimov VI (2007) Light amplification in the single-exciton regime using exciton–exciton repulsion in type-II nanocrystal quantum dots. J Phys Chem C 111(42):15382–15390

    Google Scholar 

  46. Efros AL, Kharchenko VA, Rosen M (1995) Breaking the phonon bottleneck in nanometer quantum dots—role of Auger-like processes. Solid State Commun 93(4):281–284

    ADS  Google Scholar 

  47. Creti A, Anni M, Rossi MZ, Lanzani G, Manna L, Lomascolo M (2007) Role of defect states on Auger processes in resonantly pumped CdSe nanorods. Appl Phys Lett 91(9):093106

    ADS  Google Scholar 

  48. Wang S, Querner C, Fischbein MD, Willis L, Novikov DS, Crouch CH, Drndic M (2008) Blinking statistics correlated with nanoparticle number. Nano Lett 8(11):4020–4026

    ADS  Google Scholar 

  49. Wang S, Querner C, Emmons T, Drndic M, Crouch CH (2006) Fluorescence blinking statistics from CdSe core and core/shell nanorods. J Phys Chem B 110(46):23221–23227

    Google Scholar 

  50. Krishnan R, Hahn MA, Yu ZH, Silcox J, Fauchet PM, Krauss TD (2004) Polarization surface-charge density of single semiconductor quantum rods. Phys Rev Lett 92(21):216803

    ADS  Google Scholar 

  51. Li XZ, Xia JB (2003) Effects of electric field on the electronic structure and optical properties of quantum rods with wurtzite structure. Phys Rev B 68(16):165316

    ADS  Google Scholar 

  52. Rothenberg E, Kazes M, Shaviv E, Banin U (2005) Electric field induced switching of the fluorescence of single semiconductor quantum rods. Nano Lett 5(8):1581–1586

    ADS  Google Scholar 

  53. Muller J, Lupton JM, Lagoudakis PG, Schindler F, Koeppe R, Rogach AL, Feldmann J, Talapin DV, Weller H (2005) Wave function engineering in elongated semiconductor nanocrystals with heterogeneous carrier confinement. Nano Lett 5(10):2044–2049

    ADS  Google Scholar 

  54. Li XZ, Xia JB (2002) Electronic structure and optical properties of quantum rods with wurtzite structure. Phys Rev B 66(11):115316

    ADS  Google Scholar 

  55. Chen X, Nazzal A, Goorskey D, Xiao M, Peng ZA, Peng XG (2001) Polarization spectroscopy of single CdSe quantum rods. Phys Rev B 64(24):245304

    ADS  Google Scholar 

  56. Rothenberg E, Ebenstein Y, Kazes M, Banin U (2004) Two-photon fluorescence microscopy of single semiconductor quantum rods: direct observation of highly polarized nonlinear absorption dipole. J Phys Chem B 108(9):2797–2800

    Google Scholar 

  57. Wang J, Gudiksen MS, Duan X, Cui Y, Lieber CM (2001) Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293(5534):1455–1457

    ADS  Google Scholar 

  58. Persson MP, Xu HQ (2004) Giant polarization anisotropy in optical transitions of free-standing InP nanowires. Phys Rev B 70:161310

    Google Scholar 

  59. Costi R, Saunders AE, Banin U (2010) Colloidal hybrid nanostructures: a new type of functional materials. Angew ChemInt Edit 49(29):4878–4897

    Google Scholar 

  60. Carbone L, Cozzoli PD (2010) Colloidal heterostructured nanocrystals: synthesis and growth mechanisms. Nano Today 5(5):449–493

    Google Scholar 

  61. Donega CDM (2011) Synthesis and properties of colloidal heteronanocrystals. Chem Soc Rev 40(3):1512–1546. doi:10.1039/C0CS00055H

    Google Scholar 

  62. Lo SS, Mirkovic T, Chuang CH, Burda C, Scholes GD (2011) Emergent Properties Resulting from Type-II Band Alignment in Semiconductor Nanoheterostructures. Adv Mater 23(2):180–197. doi:10.1002/adma.201002290

    Google Scholar 

  63. Steiner D, Dorfs D, Banin U, Della Sala F, Manna L, Millo O (2008) Determination of band offsets in heterostructured colloidal nanorods using scanning tunneling spectroscopy. Nano Lett 8(9):2954–2958. doi:10.1021/nl801848x

    ADS  Google Scholar 

  64. Carbone L, Nobile C, De Giorgi M, Sala FD, Morello G, Pompa P, Hytch M, Snoeck E, Fiore A, Franchini IR, Nadasan M, Silvestre AF, Chiodo L, Kudera S, Cingolani R, Krahne R, Manna L (2007) Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett 7(10):2942–2950

    ADS  Google Scholar 

  65. Koo B, Korgel BA (2008) Coalescence and interface diffusion in linear CdTe/CdSe/CdTe heterojunction nanorods. Nano Lett 8(8):2490–2496

    ADS  Google Scholar 

  66. He J, Lo SS, Kim JH, Scholes GD (2008) Control of exciton spin relaxation by electron-hole decoupling in type-II nanocrystal heterostructures. Nano Lett 8(11):4007–4013

    ADS  Google Scholar 

  67. Shieh F, Saunders AE, Korgel BA (2005) General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures. J Phys Chem B 109(18):8538–8542

    Google Scholar 

  68. Kumar S, Jones M, Lo SS, Scholes GD (2007) Nanorod heterostructures showing photoinduced charge separation. Small 3(9):1633–1639

    Google Scholar 

  69. Saunders AE, Koo B, Wang XY, Shih CK, Korgel BA (2008) Structural characterization and temperature-dependent photoluminescence of linear CdTe/CdSe/CdTe heterostructure nanorods. ChemPhysChem 9(8):1158–1163

    Google Scholar 

  70. Dooley CJ, Dimitrov SD, Fiebig T (2008) Ultrafast electron transfer dynamics in CdSe/CdTe donor-acceptor nanorods. J Phys Chem C 112(32):12074–12076

    Google Scholar 

  71. Hewa-Kasakarage NN, Kirsanova M, Nemchinov A, Schmall N, El-Khoury PZ, Tarnovsky AN, Zamkov M (2009) Radiative recombination of spatially extended excitons in (ZnSe/CdS)/CdS heterostructured nanorods. J Am Chem Soc 131(3):1328–1334

    Google Scholar 

  72. Halpert JE, Porter VJ, Zimmer JP, Bawendi MG (2006) Synthesis of CdSe/CdTe nanobarbells. J Am Chem Soc 128(39):12590–12591

    Google Scholar 

  73. Kirsanova M, Nemchinov A, Hewa-Kasakarage NN, Schmall N, Zamkov M (2009) Synthesis of ZnSe/CdS/ZnSe nanobarbells showing photoinduced charge separation. Chem Mater 21(18):4305–4309

    Google Scholar 

  74. Deka S, Falqui A, Bertoni G, Sangregorio C, Poneti G, Morello G, De Giorgi M, Giannini C, Cingolani R, Manna L, Cozzoli PD (2009) Fluorescent asymmetrically cobalt-tipped CdSe@CdS Core@Shell nanorod heterostructures exhibiting room-temperature ferromagnetic behavior. J Am Chem Soc 131(35):12817–12828

    Google Scholar 

  75. Maynadie J, Salant A, Falqui A, Respaud M, Shaviv E, Banin U, Soulantica K, Chaudret B (2009) Cobalt growth on the tips of CdSe nanorods. Angew ChemInt Edit 48(10):1814–1817

    Google Scholar 

  76. Muller J, Lupton JM, Rogach AL, Feldmann J, Talapin DV, Weller H (2004) Monitoring surface charge movement in single elongated semiconductor nanocrystals. Phys Rev Lett 93(16):167402

    ADS  Google Scholar 

  77. Muller J, Lupton JM, Rogach AL, Feldmann J, Talapin DV, Weller H (2005) Monitoring surface charge migration in the spectral dynamics of single CdSe/CdS nanodot/nanorod heterostructures. Phys Rev B 72(20):205339

    ADS  Google Scholar 

  78. Lupo MG, Della Sala F, Carbone L, Zavelani-Rossi M, Fiore A, Luer L, Polli D, Cingolani R, Manna L, Lanzani G (2008) Ultrafast electron-hole dynamics in core/shell CdSe/CdS dot/rod nanocrystals. Nano Lett 8(12):4582–4587

    ADS  Google Scholar 

  79. Talapin DV, Nelson JH, Shevchenko EV, Aloni S, Sadtler B, Alivisatos AP (2007) Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett 7(10):2951–2959

    ADS  Google Scholar 

  80. Creti A, Anni M, Zavelani-Rossi M, Lanzani G, Leo G, Della Sala F, Manna L, Lomascolo M (2005) Ultrafast carrier dynamics in core and core/shell CdSe quantum rods: role of the surface and interface defects. Phys Rev B 72(12):125346

    ADS  Google Scholar 

  81. Kraus RM, Lagoudakis PG, Rogach AL, Talapin DV, Weller H, Lupton JM, Feldmann J (2007) Room-temperature exciton storage in elongated semiconductor nanocrystals. Phys Rev Lett 98(1):017401

    ADS  Google Scholar 

  82. Morello G, Della Sala F, Carbone L, Manna L, Maruccio G, Cingolani R, De Giorgi M (2008) Intrinsic optical nonlinearity in colloidal seeded grown CdSe/CdS nanostructures: photoinduced screening of the internal electric field. Phys Rev B 78(19):195313

    ADS  Google Scholar 

  83. Ranjan V, Allan G, Priester C, Delerue C (2003) Self-consistent calculations of the optical properties of GaN quantum dots. Phys Rev B 68(11):115305

    ADS  Google Scholar 

  84. Salviati G, Rossi F, Armani N, Grillo V, Martinez O, Vinattieri A, Damilano B, Matsuse A, Grandjean N (2004) Optical and structural characterization of self-organized stacked GaN/AlN quantum dots. J Phys: Condens Matter 16(2):S115–S126

    ADS  Google Scholar 

  85. Brown RH, Twiss RQ (1956) A test of a new type of stellar interferometer on Sirius. Nature 178:1046–1048

    ADS  Google Scholar 

  86. Kimble HJ, Dagenais M, Mandel L (1977) Photon antibunching in resonance fluorescence. Phys Rev Lett 39:691–695

    ADS  Google Scholar 

  87. Purcell EM (1976) The question of correlation between photons in coherent light rays. Nature 178:1449–1450

    ADS  Google Scholar 

  88. Pisanello F, Martiradonna L, Lemenager G, Spinicelli P, Fiore A, Manna L, Hermier JP, Cingolani R, Giacobino E, De Vittorio M, Bramati A (2010) Room temperature-dipolelike single photon source with a colloidal dot-in-rod. Appl Phys Lett 96(3):033101

    ADS  Google Scholar 

  89. Langbein W, Hetterich M, Klingshirn C (1995) Many-body effects and carrier dynamics in CdSe/CdS stark superlattices. Phys Rev B 51(15):9922–9929

    ADS  Google Scholar 

  90. Halsall MP, Nicholls JE, Davies JJ, Cockayne B, Wright PJ (1992) CdS/CdSe intrinsic stark superlattices. J Appl Phys 71(2):907–915

    ADS  Google Scholar 

  91. Sitt A, Della Sala F, Menagen G, Banin U (2009) Multiexciton engineering in seeded core/shell nanorods: transfer from type-I to quasi-type-II regimes. Nano Lett 9(10):3470–3476

    ADS  Google Scholar 

  92. Ashroft NW, Mermin ND (1976) Solid state physics. Brooks Cole, New York

    Google Scholar 

  93. Kreibig U (1974) Electronic properties of small silver particles: the optical constants and their temperature dependence. J Phys F 4:999–1014

    ADS  Google Scholar 

  94. Fiore A, Mastria R, Lupo MG, Lanzani G, Giannini C, Carlino E, Morello G, De Giorgi M, Li Y, Cingolani R, Manna L (2009) Tetrapod-shaped colloidal nanocrystals of II-VI semiconductors prepared by seeded growth. J Am Chem Soc 131(6):2274–2282

    Google Scholar 

  95. Martiradonna L, Carbone L, Tandaechanurat A, Kitamura M, Iwamoto S, Manna L, De Vittorio M, Cingolani R, Arakawa Y (2008) Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals. Nano Lett 8(1):260–264

    ADS  Google Scholar 

  96. Ahmed S, Ryan KM (2009) Centimetre scale assembly of vertically aligned and close packed semiconductor nanorods from solution . Chem Commun 42:6421–6423

    Google Scholar 

  97. Baranov D, Fiore A, van Huis M, Giannini C, Falqui A, Lafont U, Zandbergen H, Zanella M, Cingolani R, Manna L (2010) Assembly of colloidal semiconductor nanorods in solution by depletion attraction. Nano Lett 10(2):743–749

    ADS  Google Scholar 

  98. Rizzo A, Nobile C, Mazzeo M, De Giorgi M, Fiore A, Carbone L, Cingolani R, Manna L, Gigli G (2009) Polarized light emitting diode by long-range nanorod self-assembling on a water surface. ACS Nano 3(6):1506–1512

    Google Scholar 

  99. Htoon H, Hollingworth JA, Malko AV, Dickerson R, Klimov VI (2003) Light amplification in semiconductor nanocrystals: quantum rods versus quantum dots. Appl Phys Lett 82(26):4776–4778

    ADS  Google Scholar 

  100. Kazes M, Lewis DY, Ebenstein Y, Mokari T, Banin U (2002) Lasing from semiconductor quantum rods in a cylindrical microcavity. Adv Mater 14(4):317–321

    Google Scholar 

  101. Kazes M, Lewis DY, Banin U (2004) Method for preparation of semiconductor quantum-rod lasers in a cylindrical microcavity. Adv Funct Mater 14(10):957–962

    Google Scholar 

  102. Zavelani-Rossi M, Lupo MG, Krahne R, Manna L, Lanzani G (2010) Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods. Nanoscale 2(6):931–935

    ADS  Google Scholar 

  103. Mie G (1908) Ann Physik 25:377–445

    ADS  MATH  Google Scholar 

  104. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653):827–829

    ADS  Google Scholar 

  105. Nobile C, Carbone L, Fiore A, Cingolani R, Manna L, Krahne R (2009) Self-assembly of highly fluorescent semiconductor nanorods into large scale smectic liquid crystal structures by coffee stain evaporation dynamics. J Phys Condens Matter 21(26):264013

    ADS  Google Scholar 

  106. Chin PTK, Donega CDM, Bavel SS, Meskers SCJ, Sommerdijk N, Janssen RAJ (2007) Highly luminescent CdTe/CdSe colloidal heteronanocrystals with temperature-dependent emission color. J Am Chem Soc 129(48):14880–14886

    Google Scholar 

  107. Jones M, Kumar S, Lo SS, Scholes GD (2008) Exciton trapping and recombination in type IICdSe/CdTe nanorod heterostructures. J Phys Chem C 112(14):5423–5431

    Google Scholar 

  108. Donega CDM (2010) Formation of nanoscale spatially indirect excitons: evolution of the type-II optical character of CdTe/CdSe heteronanocrystals. Phys Rev B 81(16):165303

    ADS  Google Scholar 

  109. Kim H, Achermann M, Balet LP, Hollingsworth JA, Klimov VI (2005) Synthesis and characterization of Co/CdSe core/shell nanocomposites: bifunctional magnetic-optical nanocrystals. J Am Chem Soc 127(2):544–546

    Google Scholar 

  110. Zanella M, Falqui A, Kudera S, Manna L, Casula MF, Parak WJ (2008) Growth of colloidal nanoparticles of group II-VI and IV-VI semiconductors on top of magnetic iron-platinum nanocrystals. J Mater Chem 18(36):4311–4317

    Google Scholar 

  111. He SL, Zhang HW, Delikanli S, Qin YL, Swihart MT, Zeng H (2009) Bifunctional magneto-optical FePt-CdS hybrid nanoparticles. J Phys Chem C 113(1):87–90

    Google Scholar 

  112. Gao JH, Zhang B, Gao Y, Pan Y, Zhang XX, Xu B (2007) Fluorescent magnetic nanocrystals by sequential addition of reagents in a one-pot reaction: a simple preparation for multifunctional nanostructures. J Am Chem Soc 129(39):11928–11935

    Google Scholar 

  113. Gu HW, Zheng RK, Zhang XX, Xu B (2004) Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc 126(18):5664–5665

    Google Scholar 

  114. Kwon KW, Shim M (2005) Gamma-Fe2O3/II-VI sulfide nanocrystal heterojunctions. J Am Chem Soc 127(29):10269–10275

    Google Scholar 

  115. McDaniel H, Shim M (2009) Size and growth rate dependent structural diversification of Fe3O4/CdS anisotropic nanocrystal heterostructures. ACS Nano 3(2):434–440

    Google Scholar 

  116. Selvan ST, Patra PK, Ang CY, Ying JY (2007) Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew ChemInt Edit 46(14):2448–2452

    Google Scholar 

  117. Habas SE, Yang PD, Mokari T (2008) Selective growth of metal and binary metal tips on CdS nanorods. J Am Chem Soc 130(11):3294–3295

    Google Scholar 

  118. Hosoki K, Tayagaki T, Yamamoto S, Matsuda K, Kanemitsu Y (2008) Direct and stepwise energy transfer from excitons to plasmons in close-packed metal and semiconductor nanoparticle monolayer films. Phys Rev Lett 100(20):207404

    ADS  Google Scholar 

  119. Nobile C, Fonoberov VA, Kudera S, Della Torre A, Ruffino A, Chilla G, Kipp T, Heitmann D, Manna L, Cingolani R, Balandin AA, Krahne R (2007) Confined optical phonon modes in aligned nanorod arrays detected by resonant inelastic light scattering. Nano Lett 7(2):476–479

    ADS  Google Scholar 

  120. Krahne R, Chilla G, Schuller C, Kudera S, Tari D, De Giorgi M, Heitmann D, Cingolani R, Manna L (2006) Shape dependence of the scattering processes of optical phonons in colloidal nanocrystals detected by Raman Spectroscopy. J Nanoelectr Optoelect 1(1):104–107

    Google Scholar 

  121. Becker K, Lupton JM, Muller J, Rogach AL, Talapin DV, Weller H, Feldmann J (2006) Electrical control of Forster energy transfer. Nat Mater 5(10):777–781

    ADS  Google Scholar 

  122. Zavelani-Rossi M, Krahne R, Della Valle G, Longhi S, Franchini IR, Girardo S, Scotognella F, Pisignano D, Manna L, Lanzani G, Tassone F (2012) Self-assembled CdSe/CdS nanorod micro-lasers fabricated from solution by capillary jet deposition. Laser Photonics Rev 6(5):678–683

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Krahne .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krahne, R., Manna, L., Morello, G., Figuerola, A., George, C., Deka, S. (2013). Optical Properties of Semiconductor Nanorods. In: Physical Properties of Nanorods. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36430-3_2

Download citation

Publish with us

Policies and ethics