Abstract
This text gives a broad overview of the domain of visual medical information retrieval and medical information analysis/search in general. The goal is to describe the specifics of medical information analysis and more specifically of medical visual information retrieval in this book of the PROMISE winter school. The text is meant to deliver an annotated bibliography of important papers and tendencies in the domain that can then guide the reader to find more detailed information on this quickly developing research domain. This text is by no means a systematic review in the field, so some citations might be subjective but should lead the reader to further publications. The given references will provide a solid starting point for exploring the domain of medical visual information retrieval.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Simel, D., Drummond, R.: The rational clinical examination: evidence–based clinical diagnosis. McGraw-Hill (August 2008)
Bui, A.A.T., Taira, R.K., Dionision, J.D.N., Aberle, D.R., El-Saden, S., Kangarloo, H.: Evidence–based radiology. Academic Radiology 9(6), 662–669 (2002)
Hunter, L., Cohen, K.B.: Biomedical language processing: What’s beyond pubmed? Molecular Cell 21(5), 589–594 (2006)
Riding the wave: How europe can gain from the rising tide of scientific data. Submission to the European Comission (October 2010), http://cordis.europa.eu/fp7/ict/e-infrastructure/docs/hlg-sdi-report.pdf
Zhang, C., De Sterck, H., Aboulnaga, A., Djambazian, H., Sladek, R.: Case Study of Scientific Data Processing on a Cloud Using Hadoop. In: Mewhort, D.J.K., Cann, N.M., Slater, G.W., Naughton, T.J. (eds.) HPCS 2009. LNCS, vol. 5976, pp. 400–415. Springer, Heidelberg (2010)
Safran, C., Bloomrosen, M., Hammond, W.E., Labkoff, S., Markel-Fox, S., Tang, P.C., Detmer, D.E.: Toward a national framework for the secondary use of health data: An american medical informatics association white paper. MIM 14, 1–9 (2007)
Elger, B., Iavindrasana, J., Iacono, L.L., Müller, H., Roduit, N., Summers, P., Wright, J.: Strategies for health data exchange for secondary, cross–institutional clinical research. Computer Methods and Programs in Biomedicine 99(3), 230–251 (2010)
Hersh, W.: Information Retrieval — A health and Biomedical Perspective, 2nd edn. Springer (2003)
Hersh, W., Jensen, J., Müller, H., Gorman, P., Ruch, P.: A qualitative task analysis for developing an image retrieval test collection. In: ImageCLEF/MUSCLE Workshop on Image Retrieval Evaluation, Vienna, Austria, pp. 11–16 (2005)
Hoogendam, A., de Vries Robbé, P.F., Overbeke, A.J.: Answers to questions posed during daily patient care are more likely to be answered by uptodate than pubmed. Journal of Medical Internet Research 10(4) (2008)
Hersh, W.R., Hickam, D.H.: How well do physicians use electronic information retrieval systems? Journal of the American Medical Association 280(15), 1347–1352 (1998)
Müller, H., Despont-Gros, C., Hersh, W., Jensen, J., Lovis, C., Geissbuhler, A.: Health care professionals’ image use and search behaviour. In: Proceedings of the Medical Informatics Europe Conference (MIE 2006), pp. 24–32. IOS Press, Studies in Health Technology and Informatics, Maastricht, The Netherlands (2006)
Glasgow, J., Jurisica, I.: Integration of case–based and image–based reasoning. In: AAAI Workshop on Case–Based Reasoning Integrations, pp. 67–74. AAAI Press, Menlo Park (1998)
Kahn Jr., C., Thao, C.: Goldminer: A radiology image search engine. American Journal of Roentgenology 188, 1475–1478 (2008)
Ruch, P., Baud, R., Geissbuhler, A.: Using lexical disambiguation and named–entity recognition to improve spelling correction in the electronique patient record. AIM 29, 169–184 (2003)
Franz, P., Zaiss, A., Hahn, U., Schulz, S., Klar, R.: Automated coding of diagnoses – three methods compared. In: Proceedings of the Annual Symposium of the American Society for Medical Informatics (AMIA), Los Angeles, CA, USA (November 2000)
Gobeill, J., Theodoro, D., Patsche, E., Ruch, P.: Taking benefit of query and document expansion using MeSH descriptors in medical ImageCLEF 2009. Working Notes of the 2009 CLEF Workshop, Corfu, Greece (September 2009)
Lanlotz, C.P.: Radlex: A new method for indexing online educational materials. Radiographics 26, 1595–1597 (2006)
Müller, H., Schumacher, M., Godel, D., Khaled, O.A., Mooser, F., Ding, S.: Medicoordination: A practical approach to interoperability in the swiss health system. In: The Medical Informatics Europe Conference (MIE 2009), Sarajevo, Bosnia–Herzegovina, pp. 210–214 (August 2009)
Ide, N.C., Loane, R.F., Demner-Fushman, D.: Application of information technology: Essie: A concept–based search engine for structured biomedical text. Journal of the American Medical Informatics Association 14(3), 253–263 (2007)
Demner-Fushman, D., Antani, S., Siadat, M.R., Soltanian-Zadeh, H., Fotouhi, F., Elisevich, K.: Automatically finding images for clinical decision support. In: Proceedings of the Seventh IEEE International Conference on Data Mining Workshops, ICDMW 2007, pp. 139–144. IEEE Computer Society, Washington, DC (2007)
Salton, G., Buckley, C.: Term weighting approaches in automatic text retrieval. IPM 24(5), 513–523 (1988)
van Rijsbergen, C.J.: Information Retrieval. Prentice Hall, Englewood Cliffs (1979)
Müller, H., Michoux, N., Bandon, D., Geissbuhler, A.: A review of content–based image retrieval systems in medicine–clinical benefits and future directions. International Journal of Medical Informatics 73(1), 1–23 (2004)
Akgül, C., Rubin, D., Napel, S., Beaulieu, C., Greenspan, H., Acar, B.: Content–based image retrieval in radiology: Current status and future directions. Journal of Digital Imaging 24(2), 208–222 (2011)
Tang, L.H.Y., Hanka, R., Ip, H.H.S.: A review of intelligent content–based indexing and browsing of medical images. HIJ 5, 40–49 (1999)
Lowe, H.J., Antipov, I., Hersh, W., Smith, C.A.: Towards knowledge–based retrieval of medical images. The role of semantic indexing, image content representation and knowledge–based retrieval. In: Proceedings of the Annual Symposium of the American Society for Medical Informatics (AMIA), Nashville, TN, USA, pp. 882–886 (October 1998)
Tagare, H.D., Jaffe, C., Duncan, J.: Medical image databases: A content–based retrieval approach. Journal of the American Medical Informatics Association 4(3), 184–198 (1997)
Dahmen, J., Theiner, T., Keysers, D., Ney, H., Lehmann, T., Wein, B.: Classification of radiographs in the ’image retrieval in medical applications’ — system (IRMA). In: 6th International RIAO Conference on Content-Based Multimedia Information Access, Paris, France, pp. 551–566 (April 2000)
Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content–based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)
Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys 40(2), 1–60 (2008)
Jörgensen, C.: Retrieving the unretrievable in electronic imaging systems: emotions, themes and stories. In: Rogowitz, B., Pappas, T.N. (eds.) Human Vision and Electronic Imaging IV, San Jose, California, USA, January 23-29. SPIE Proc., vol. 3644. SPIE Photonics West Conference (1999)
Aisen, A.M., Broderick, L.S., Winer-Muram, H., Brodley, C.E., Kak, A.C., Pavlopoulou, C., Dy, J., Shyu, C.R., Marchiori, A.: Automated storage and retrieval of thin–section CT images to assist diagnosis: System description and preliminary assessment. Radiology 228(1), 265–270 (2003)
Depeursinge, A., Sage, D., Hidki, A., Platon, A., Poletti, P.A., Unser, M., Müller, H.: Lung tissue classification using Wavelet frames. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2007, Lyon, France, pp. 6259–6262. IEEE Computer Society (2007)
Hsu, W., Antani, S., Long, L.R., Neve, L., Thoma, G.R.: Spirs: A web-based image retrieval system for large biomedical databases. International Journal of Medical Informatics 78(suppl. 1), S13–S24 (2009); MedInfo 2007
Costa, M.J., Tsymbal, A., Hammon, M., Cavallaro, A., Sühling, M., Seifert, S., Comaniciu, D.: A Discriminative Distance Learning–Based CBIR Framework for Characterization of Indeterminate Liver Lesions. In: Müller, H., Greenspan, H., Syeda-Mahmood, T. (eds.) MCBR-CDS 2011. LNCS, vol. 7075, pp. 92–104. Springer, Heidelberg (2012)
Depeursinge, A., Fischer, B., Müller, H., Deserno, T.M.: Prototypes for content–based image retrieval in clinical practice. The Open Medical Informatics Journal 5, 58–72 (2011)
Clough, P., Müller, H., Sanderson, M.: The CLEF 2004 Cross-Language Image Retrieval Track. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 597–613. Springer, Heidelberg (2005)
Hersh, W., Müller, H., Kalpathy-Cramer, J., Kim, E., Zhou, X.: The consolidated ImageCLEFmed medical image retrieval task test collection. Journal of Digital Imaging 22(6), 648–655 (2009)
Müller, H., Clough, P., Deselaers, T., Caputo, B. (eds.): ImageCLEF – Experimental Evaluation in Visual Information Retrieval. The Springer International Series on Information Retrieval, vol. 32. Springer, Heidelberg (2010)
Kalpathy-Cramer, J., Müller, H., Bedrick, S., Eggel, I., García Seco de Herrera, A., Tsikrika, T.: The CLEF 2011 medical image retrieval and classification tasks. Working Notes of CLEF 2011 (Cross Language Evaluation Forum) (September 2011)
Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. In: Proceedings of the 6th Conference on Symposium on Opearting Systems Design & Implementation, OSDI 2004, vol. 6, p. 10. USENIX Association, Berkeley (2004)
Markonis, D., Holzer, M., Dung, S., Vargas, A., Langs, G., Kriewel, S., Müller, H.: A survey on visual information search behavior and requirements of radiologists. Methods of Information in Medicine (forthcoming 2012)
Quellec, G., Lamard, M., Cazuguel, G., Roux, C., Cochener, B.: Case retrieval in medical databases by fusing heterogeneous information. IEEE Transactions on Medical Imaging 30(1), 108–118 (2011)
Depeursinge, A., Vargas, A., Platon, A., Geissbuhler, A., Poletti, P.–A., Müller, H.: 3D Case–Based Retrieval for Interstitial Lung Diseases. In: Caputo, B., Müller, H., Syeda-Mahmood, T., Duncan, J.S., Wang, F., Kalpathy-Cramer, J. (eds.) MCBR-CDS 2009. LNCS, vol. 5853, pp. 39–48. Springer, Heidelberg (2010)
Zhou, X., Depeursinge, A., Stern, R., Lovis, C., Müller, H.: Case–based visual retrieval of fractures. International Journal of Computer Assisted Radiology and Surgery 5(suppl. 1), 11548/S162–11548/S163 (2010)
Depeursinge, A., Zrimec, T., Busayarat, S., Müller, H.: 3D lung image retrieval using localized features. In: Medical Imaging 2011: Computer–Aided Diagnosis. SPIE, vol. 7963, p. 79632E (2011)
Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D.: A search engine for 3d models. ACM Transactions on Graphics 22(1), 83–105 (2003)
Johnson, T.R.C., Krauß, B., Sedlmair, M., Grasruck, M., Bruder, H., Morhard, D., Fink, C., Weckbach, S., Lenhard, M., Schmidt, B., Flohr, T., Reiser, M.F., Becker, C.R.: Material differentiation by dual energy CT: initial experience. European Radiology 17(6), 1510–1517 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Müller, H. (2013). Medical (Visual) Information Retrieval. In: Agosti, M., Ferro, N., Forner, P., Müller, H., Santucci, G. (eds) Information Retrieval Meets Information Visualization. PROMISE 2012. Lecture Notes in Computer Science, vol 7757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36415-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-36415-0_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36414-3
Online ISBN: 978-3-642-36415-0
eBook Packages: Computer ScienceComputer Science (R0)