Introduction to Information Visualisation

  • Alan Dix
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7757)


This is a short introduction to information visualisation, which is increasingly important in many fields as information expands faster than our ability to comprehend it. Visualisation makes data easier to understand through direct sensory experience (usually visual), as opposed to more linguistic/logical reasoning. This chapter examines reasons for using information visualisation both for professional data analysts and also end-users. It will also look at some of the history of visualisation (going back 4,500 years), classic examples of information visualisations, and some current challenges for visualisation research and practice. Design of effective visualisation requires an appreciation of human perceptual, cognitive and also organisational and social factors, and the chapter discusses some of these factors and the design issues and principles arising from them.


information visualisation human-computer interaction HCI visual analytics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Spence, B.: Information visualization: design for interaction. Prentice Hall (2007)Google Scholar
  2. 2.
    Pirolli, P., Rao, R.: Table lens as a tool for making sense of data. In: Proceedings of the Workshop on Advanced Visual Interfaces, pp. 67–80. ACM, New York (1996)CrossRefGoogle Scholar
  3. 3.
    Furnas, G.W.: Generalized fisheye views. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 16–23. ACM, New York (1986)Google Scholar
  4. 4.
    Deficit, national debt and government borrowing - how has it changed since (1946),
  5. 5.
    Lee, P.: Lies, Damned Lies and Statistics. part of Materials for the History of Statistics (2012),
  6. 6.
  7. 7.
    Adam, T., Agafonova, N., Aleksandrov, A., et al.: Measurement of the neutrino velocity with the OPERA detector in the CNGS beam. Arxiv (November 17, 2011)Google Scholar
  8. 8.
    Tominski, C., Abello, J., Schumann, H.: CGV–An interactive graph visualization system. Computers & Graphics 33, 660–678 (2009)CrossRefGoogle Scholar
  9. 9.
    Tufte, E.: The Visual Display of Quantitative Information. Graphics Press, Cheshire (1983)Google Scholar
  10. 10.
    Tufte, E.: Envisioning Information. Graphics Press, Cheshire (1990)Google Scholar
  11. 11.
    Tufte, E.: Visual Explanations. Graphics Press, Cheshire (1997)zbMATHGoogle Scholar
  12. 12.
    Robertson, G.G., Mackinlay, J.D., Card, S.K.: Cone Trees: animated 3D visualizations of hierarchical information. In: Proc. CHI 1991, pp. 189–194. ACM Press, New Orleans (1991)Google Scholar
  13. 13.
    2D space filling visualisation for hierarchical dataGoogle Scholar
  14. 14.
    Ahlberg, C., Shneiderman, B.: Visual information seeking: tight coupling of dynamic query filters with starfield displays. In: Proceedings of the SIGCHI Conference on Human factors in Computing Systems: Celebrating Interdependence, pp. 313–317. ACM Press, New York (1994)CrossRefGoogle Scholar
  15. 15.
    Mackinlay, J.D., Rao, R., Card, S.K.: An organic user interface for searching citation links. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 67–73. ACM Press/Addison-Wesley Publishing Co., New York (1995)Google Scholar
  16. 16.
    Keim, D.A., Hao, M.C., Dayal, U., Hsu, M.: Pixel Bar Charts: A Visualization Technique for Very Large Multi-Attribute Data Sets. Information Visualization Journal 1 (2002)Google Scholar
  17. 17.
  18. 18.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51, 107–113 (2008)CrossRefGoogle Scholar
  19. 19.
    Thomas, J.J., Cook, K.A.: Illuminating the Path: The Research and Development Agenda for Visual Analytics. IEEE Press (2005)Google Scholar
  20. 20.
    Keim, D., Kohlhammer, J., Ellis, G., Mansmann, F.: Mastering the Information Age Solving Problems with Visual Analytics. Eurographics Association (2011)Google Scholar
  21. 21.
    Lamping, J., Rao, R., Pirolli, P.: A focus+context technique based on hyperbolic geometry for visualizing large hierarchies. In: Proc. ACM CHI 1995 Conference (1995)Google Scholar
  22. 22.
    Ellis, G., Dix, A.: A Taxonomy of Clutter Reduction for Information Visualisation. IEEE Transactions on Visualization and Computer Graphics 13, 1216–1223 (2007)CrossRefGoogle Scholar
  23. 23.
    Pirolli, P., Schank, P., Hearst, M., Diehl, C.: Scatter/Gather browsing communicates the topic structure of a very large text collection. In: Proc. CHI 1996, pp. 213–220. ACM Press, Vancouver (1996)Google Scholar
  24. 24.
  25. 25.
    Pollitt, A.S., Ellis, G.P., Smith, M.P.: HIBROWSE for bibliographic database. J. Inf. Sci. 20, 413–426 (1994)CrossRefGoogle Scholar
  26. 26.
    Schraefel, m.c, Karam, M., Zhao, S.: mSpace: interaction design for user-determined, adaptable domain exploration in hypermedia. In: Workshop on Adaptive Hypermedia and Adaptive Web Based Systems, pp. 217–235 (2003)Google Scholar
  27. 27.
    Tweedie, L., Spence, R., Dawkes, H., Su, H.: The Influence Explorer. In: Proc. ACM CHI 1995 (1996)Google Scholar
  28. 28.
    Tweedie, L., Spence, R., Dawkes, H., Su, H.: The Influence Explorer (video) - a tool for design. In: Proc. ACM CHI 1996 (1996)Google Scholar
  29. 29.
    Dix, A., Ellis, G.: By Chance - enhancing interaction with large data sets through statistical sampling. In: Proceedings of the Working Conference on Advanced Visual Interfaces, pp. 167–176. ACM, New York (2002)Google Scholar
  30. 30.
    Dix, A., Ellis, G.: Starting Simple - adding value to static visualisation through simple interaction. Presented at the Proceedings of Advanced Visual Interfaces, AVI 1998, L’Aquila, Italy (1998)Google Scholar
  31. 31.
    O’Donnell, R., Dix, A., Ball, L.: Exploring the PieTree for Representing Numerical Hierarchical Data. Presented at the Proceedings of Proceedings of HCI 2006, People and Conputers XX - Engage (2006)Google Scholar
  32. 32.
    Shneiderman, B., Plaisant, C.: Designing the User Interface: Strategies for Effective Human-Computer Interaction, 4th edn. Pearson Addison Wesley (2004)Google Scholar
  33. 33.
    Pirolli, P.: Information foraging theory: adaptive interaction with information. Oxford University Press, Oxford (2007)CrossRefGoogle Scholar
  34. 34.
    Dix, A., Pohl, M., Ellis, G.: Perception and Cognitive Aspects. In: Mastering the Information Age Solving Problems with Visual Analytics, pp. 109–130. Eurographics Association (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alan Dix
    • 1
    • 2
  1. 1.TalisBirminghamUK
  2. 2.School of Computer ScienceUniversity of BirminghamBirminghamUK

Personalised recommendations