Mashups for Web Search Engines

  • Ioannis Papadakis
  • Ioannis Apostolatos


Current practice in looking for information on the web states that searchers rely on large-scale web search engines to get assistance. The quality of the search results is analogous to the ability of the searchers to accurately express their information needs as keywords in the search engine’s input box. In this chapter, an attempt is made to explore the various efforts that have been made regarding the query construction/refinement phase of a search session on the web. Along these lines, a number of cases are presented that are based on intuitively created mashups for the underlying web search engine. Particular attention is given to two query construction/refinement mashups that integrate various DBpedia datasets with the web search engine provided by Google.


Search Engine Search Result Relevance Feedback Information Seeker SPARQL Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aghaee S, Pautasso C (2012) End-user programming for web mashups. In: Haarth A, Koch N (eds) Current trends in web engineering. Lecture notes in computer science, vol 7059, pp 347–351. doi: 10.1007/978-3-642-27997-3_38 CrossRefGoogle Scholar
  2. 2.
    Aktas M, Nacar M, Menczer F (2004) Using hyperlink features to personalize web search. In: Advances in web mining and web usage analysis. Proceedings of the 6th international workshop on knowledge discovery from the web, WebKDD 2004, Seattle Google Scholar
  3. 3.
    Apostolatos I, Papadakis I (2012) GContext: context-based search provided by Wikipedia. In: AI mashup challenge 2012, ESWC 2012.
  4. 4.
    Auer S, Bizer C, Lehmann J, Kobilarov G, Cyganiak R, Ives Z (2007) DBpedia: a nucleus for a web of open data. In: Proceedings of international semantic web conference, ISWC’07 Google Scholar
  5. 5.
    Baeza-Yates R, Ciaramita M, Mika P, Zaragoza H (2008) Towards semantic search. In: Natural language and information systems. Lecture notes in computer science, vol 5039, pp 4–11 CrossRefGoogle Scholar
  6. 6.
    Bates M (1986) Subject access in online catalogs: a design model. J Am Soc Inf Sci 11:357–376 Google Scholar
  7. 7.
    Beckers T, Fuhr N (2012) Search system functions for supporting search modes. In: Proceedings of the 2nd European workshop on human–computer interaction and information retrieval, EuroHCIR 2012.
  8. 8.
    Belkin NJ (1980) Anomalous states of knowledge as the basis for information retrieval. C J Inf Sci 5:133–143 Google Scholar
  9. 9.
    Bhogal J, Macfarlane A, Smith P (2007) A review of ontology based query expansion. Inf Process Manag 43(4):866–886 CrossRefGoogle Scholar
  10. 10.
    Billerbeck B, Scholer F, Williams HE, Zobel J (2003) Query expansion using associated queries. In: Proceedings of the ACM CIKM conference Google Scholar
  11. 11.
    Bizer C, Cyganiak R, Gau T (2007) The RDF book mashup: from web APIs to a web of data. In: Proceedings of the 3rd workshop on scripting for the semantic web, SFSW 07.
  12. 12.
    Bradley P (2008) Human-powered search engines: an overview and roundup. Ariadne 54.
  13. 13.
    Daoud M, Tamine L, Boughanem M, Chebaro B (2009) A session based personalized search using an ontological user profile. In: ACM symposium on applied computing, Hawaii. ACM, London, pp 1031–1035 Google Scholar
  14. 14.
    Dervin B (1982) Useful theory for librarianship: communication, not information. Drexel Libr Q 13:16–32 Google Scholar
  15. 15.
    Diaz F, Metzler D (2006) Improving the estimation of relevance models using large external corpora. In: Proceedings of the SIGIR conference, pp 154–161 Google Scholar
  16. 16.
    Foskett DJ (1997) Readings in information retrieval. In: Jones KS, Willet P (eds) Thesaurus. Morgan Kaufman, San Francisco, pp 111–134 Google Scholar
  17. 17.
    Koolen M, Kazai G, Craswell N (2009) Wikipedia pages as entry points for book search. In: Proceedings of the 2nd ACM international conference on web search and data mining, WSDM’09, pp 44–53 CrossRefGoogle Scholar
  18. 18.
    Lenat D, Guha R, Pittman K, Pratt D, Shepherd M (1990) CYC: toward programs with common sense. Commun ACM 33(8):30–49 CrossRefGoogle Scholar
  19. 19.
    Li Y, Luk RWP, Ho EKS, Chung FL (2007) Improving weak ad-hoc queries using Wikipedia as external corpus. In: Proceedings of the SIGIR conference, pp 797–798 Google Scholar
  20. 20.
    Mandala R, Tokunaga T, Tanaka H (1999) Combining multiple evidence from different types of thesaurus for query expansion. In: Proceedings of the 22nd annual international conference on research and development in information retrieval. ACM, Berkeley Google Scholar
  21. 21.
    Marchionini G (1995) Information seeking in electronic environments. Cambridge series on human–computer interaction. Cambridge University Press, New York CrossRefGoogle Scholar
  22. 22.
    Miller GA (1995) WordNet: a lexical database for English. Commun ACM 38(11):39–41 CrossRefGoogle Scholar
  23. 23.
    Milne DN, Witten IH, Nichols DM (2007) A knowledge-based search engine powered by Wikipedia. In: Proceedings of the sixteenth ACM conference on information and knowledge management, CIKM’07, Lisbon, pp 445–454 CrossRefGoogle Scholar
  24. 24.
    Papadakis I, Stefanidakis M, Stamou S, Andreou I (2009) A query construction service for large-scale web search engines. In: Web intelligence and intelligent agent technologies. IEEE/WIC/ACM international joint conferences, WI-IAT’09, pp 96–99 CrossRefGoogle Scholar
  25. 25.
    Papadakis I, Stefanidakis M, Stamou S, Andreou I (2012) Semantifying queries over large-scale web search engines. J Internet Serv Appl. doi: 10.1007/s13174-012-0068-9 Google Scholar
  26. 26.
    Pazzani M, Muramatsu J, Billsus D (1996) Syskill & Webert: identifying interesting web sites. In: Proceedings of the 13th national conference on artificial intelligence, pp 54–61 Google Scholar
  27. 27.
    Salton G, Buckley C (1990) Improving retrieval performance by relevance feedback. J Am Soc Inf Sci 41(4):288–297 CrossRefGoogle Scholar
  28. 28.
    Shneiderman B (1997) Direct manipulation for comprehensible, predictable and controllable user interfaces. In: Moore J, Edmonds E, Puerta A (eds) Proceedings of international conference on intelligent IJser interfaces (IUI97). ACM, Orlando Google Scholar
  29. 29.
    Sieg A, Mobasher B, Burke R (2007) Web search personalization with ontological user profiles. In: Proceedings of the ACM conference on information and knowledge management, CIKM’07. ACM, New York, pp 525–534 Google Scholar
  30. 30.
    Spencer D (2006) Four modes of seeking information and how to design for them, boxes and arrows.
  31. 31.
    Suchanek FM, Kasneci G, Weikum G (2007) YAGO: a core of semantic knowledge-unifying WordNet and Wikipedia. In: Proceedings of the WWW conference, pp 697–706 Google Scholar
  32. 32.
    Sun JT (2005) CubeSVD: a novel approach to personalized web search. In: Proceedings of WWW’05, pp 382–390 Google Scholar
  33. 33.
    Surowiecki J (2004) The wisdom of crowds. Random House, New York. ISBN 978-0385721707 Google Scholar
  34. 34.
    Voorhees EM (2003) Overview of TREC 2003. In: REC, pp 1–13 Google Scholar
  35. 35.
    White MD, Livonen M (2001) Questions as a factor in web search strategy. Inf Process Manag 37(5):721–740 (p 723) zbMATHCrossRefGoogle Scholar
  36. 36.
    Wu F, Weld DS (2008) Automatically refining the Wikipedia infobox ontology. In: Proceedings of the 17th international world wide web conference, pp 635–644 CrossRefGoogle Scholar
  37. 37.
    Yokoi T (1995) The EDR electronic dictionary. Commun ACM 38(11):42–44 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Archives and Library ScienceIonian UniversityCorfuGreece
  2. 2.Department of InformaticsUniversity of PiraeusPiraeusGreece

Personalised recommendations