Skip to main content

Biological Cell Manipulation/Measurement/ Analysis under E-SEM

  • Chapter
Micro-Nanorobotic Manipulation Systems and Their Applications

Abstract

In this chapter, the historical development of our Environmental-Scanning Electron Microscope (E-SEM) nanomanipulation system has been presented. The working principles which enable the E-SEM system to operate under various pressure levels are explained. The design of the nanomanipulator system is presented and the derivation of its kinematics is showed and confirmed. These two systems, i.e. E-SEM and nanomanipulator, were then integrated for realizing single cells property characterizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fields, S., Johnston, M.: Cell biology: Whither model organism research? Science 307, 1885–1886 (2005)

    Article  Google Scholar 

  2. Fox, M.A.: The case for animal experimentation: An evolutionary and ethical perspective. University of California Press (1986)

    Google Scholar 

  3. Botstein, D., Chervitz, S.A., Cherry, J.M.: Yeast as a model organism. Science 277, 1259–1260 (1997)

    Article  Google Scholar 

  4. Foury, F.: Human genetic diseases – a cross-talk between man and yeast. Gene 195, 1–10 (1997)

    Article  Google Scholar 

  5. Mager, W.H., Winderickx, J.: Yeast as a model for medical and medicinal research. TRENDS in Pharmacological Sciences 26, 265–273 (2005)

    Article  Google Scholar 

  6. Hartwell, L.H.: Yeast and cancer. Biosci. Rep. 22, 373–394 (2002)

    Article  Google Scholar 

  7. Misirli, Z., Oner, E.T., Kirdar, B.: Real imaging and size values of saccharomyces cerevisiae cells with comparable contrast tuning to two environmental scanning electron microscopy modes. Scanning 29, 11–19 (2007)

    Article  Google Scholar 

  8. Fischer-Cripps, A.C.: Nanoindentation, 1st edn. Springer (2002)

    Google Scholar 

  9. Stephen, N.G.: Macaulay’s method for a timoshenko beam. International Journal of Mechanical Engineering Education 35, 285–292 (2007)

    Article  Google Scholar 

  10. Sader, J.E.: Parallel beam approximation for v-shaped atomic force, microscope cantilevers. Review of Scientific Instruments 66, 4583–4587 (1995)

    Article  Google Scholar 

  11. O’Mara, W.C., Herring, R.B., Hunt, L.P.: Handbook of semiconductor silicon technology. Noyes Publications, UK (1990)

    Google Scholar 

  12. Hertz, H.: On the contact of elastic solids. J. Reine und Angewandte Mathematik 92, 156–171 (1882)

    MATH  Google Scholar 

  13. Pharr, G.M., Oliver, W.C., Brotzen, F.R.: On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mat. Res. 7, 619–627 (2002)

    Google Scholar 

  14. A-Hassan, E., Heinz, W.F., Antonik, M.D., D’Costa, N.P., Nageswaran, S., Schoenenberger, C.-A., Hoh, J.H.: Relative microelastic mapping of living cells by atomic force microscopy. Biophysical Journal 74, 1564–1578 (1998)

    Article  Google Scholar 

  15. Klis, F.M., Boorsma, A., Groot, P.W.J.D.: Cell wall construction in saccharomyces cerevisiae. Yeast 23, 185–202 (2006)

    Article  Google Scholar 

  16. Pelling, A.E., Sehati, S., Gralla, E.B., Valentine, J.S., Gimzewski, J.K.: Local nanomechanical motion of the cell wall of saccharomyces cerevisiae. Science 305, 1147–1150 (2004)

    Article  Google Scholar 

  17. Sader, J.E.: Parallel beam approximation for v-shaped atomic force, microscope cantilevers. Review of Scientific Instruments 66, 4583–4587 (1995)

    Article  Google Scholar 

  18. Mendels, D.-A., Lowe, M., Cuenat, A., Cain, M.G., Vallejo, E., Ellis, D., Mendels, F.: Dynamic properties of afm cantilevers and the calibration of their spring constants. Journal of Micromechanics and Microengineering 16, 1720–1733 (2006)

    Article  Google Scholar 

  19. Aksu, S.B., Turner, J.A.: Calibration of atomic force microscope cantilevers using piezolevers. Review of Scientific Instruments 78, 1–8 (2007)

    Article  Google Scholar 

  20. Brehm-Stecher, B.F., Johson, E.A.: Single-cell microbiology: Tools, technologies, and applications. Microbiology and Molecular Biology Reviews 68, 538–559 (2004)

    Article  Google Scholar 

  21. Harold, F.M.: Molecules into cells: Specifying spatial architecture. Microbiology and Molecular Biology 69, 544–564 (2005)

    Article  Google Scholar 

  22. Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002)

    Article  Google Scholar 

  23. Shapiro, H.M.: Microbial analysis at the single-cell level: Tasks and techniques. Journal of Microbiological Methods 42, 3–16 (2000)

    Article  Google Scholar 

  24. Fung, Y.C.: Biomechanics: Mechanical properties of living tissue, 2nd edn. Springer (2005)

    Google Scholar 

  25. Smith, A.E., Zhang, Z., Thomas, C.R., Moxham, K.E., Middelberg, A.P.J.: The mechanical properties of saccharomyces cerevisiae. Proceedings of the National Academy of Sciences 97, 9871–9874 (2000)

    Article  Google Scholar 

  26. Obataya, I.: Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle. Nano Letters 5, 27–30 (2005)

    Article  Google Scholar 

  27. Lanero, T.S.: Mechanical properties of single living cells encapsulated in polyelectrolyte matrixes. Journal of Biotechnology 124, 723–731 (2006)

    Article  Google Scholar 

  28. Donald, A.M.: The use of environmental scanning electron microscopy for imaging wet and insulating materials. Nature Materials 2, 511–516 (2003)

    Article  Google Scholar 

  29. Obataya, I., Nakamura, C., Han, S.W., Nakamura, N., Miyake, J.: Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle. Nano Letters 5, 27–30 (2005)

    Article  Google Scholar 

  30. Lanero, T.S., Cavalleri, O., Krol, S., Rolandi, R., Gliozzi, A.: Mechanical properties of single living cells encapsulated in polyelectrolyte matrixes. Journal of Biotechnology 124, 723–731 (2006)

    Article  Google Scholar 

  31. Touhami, A., Nysten, B., Dufrene, Y.F.: Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 19, 4539–4543 (2003)

    Article  Google Scholar 

  32. Sneddon, I.N.: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Engng. Sci. 3, 47–57 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  33. King, R.B.: Elastic analysis of some punch problems for a layered medium. International Journal of Solids and Structures 23, 1657–1664 (1987)

    Article  MATH  Google Scholar 

  34. Dao, M., Chollacoop, N., Van Vliet, K.J., Venkatesh, T.A., Suresh, S.: Computational modelling of the forward and reverse problems in instrumented sharp indentation. Acta Materialia 49, 3899–3918 (2001)

    Article  Google Scholar 

  35. Tortora, G.J., Funke, B.R., Case, C.L.: Microbiology: An introduction, 8th edn. Benjamin Cummings (2003)

    Google Scholar 

  36. Bausch, A.R., Moller, W., Sachmann, E.: Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophysical Journal 76, 573–579 (1999)

    Article  Google Scholar 

  37. Gueta, R., Barlam, D., Shneck, R.Z., Rousso, I.: Measurement of the mechanical properties of isolated tectorial membrane using atomic force microscopy. Proceedings of the National Academy of Sciences 103, 14790–14795 (2006)

    Article  Google Scholar 

  38. Guck, J., Ananthakrishnan, R., Mahmood, H., Moon, T.J., Cunningham, C.C., Kas, J.: The optical stretcher: A novel laser tool to micromanipulate cells. Biophysical Journal 81, 767–784 (2001)

    Article  Google Scholar 

  39. Thoumine, O., Ott, A., Cardoso, O., Meister, J.J.: Microplates: A new tool for manipulation and mechanical pertubation of individual cells. J. Biochem. Biophys. Meth. 39, 47–62 (1999)

    Article  Google Scholar 

  40. Leary, S.P., Liu, C.Y., Apuzzo, M.L.I.: Toward the emergence of nanoneurosurgery: Part iii - nanomedicine: Targeted nanotherapy, nanosurgery, and progress toward the realization of nanoneurosurgery. Neurosurgery 58, 1009–1025 (2006)

    Article  Google Scholar 

  41. Bianco, A., Kostarelos, K., Prato, M.: Applications of carbon nanotubes in drug delivery. Current Opinion in Chemical Biology 9, 674–679 (2005)

    Article  Google Scholar 

  42. McKnight, T., Melechko, A., Griffin, G., Guillorn, M., Merkulov, V., Serna, F., Hensley, D., Doktycz, M., Lowndes, D., Simpson, M.: Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology 14, 551–556 (2003)

    Article  Google Scholar 

  43. Brigger, I., Dubernet, C., Couvreur, P.: Nanoparticles in cancer theraphy and diagnosis. Advance Drug Delivery Reviews 54, 631–651 (2002)

    Article  Google Scholar 

  44. Labhasetwar, V.: Nanotechnology for drug and gene theraphy: The importance of understanding molecular mechanisms of delivery. Current Opinion in Biotechnology 16, 674–680 (2005)

    Article  Google Scholar 

  45. Stylios, G.K., Giannoudis, P.V., Wan, T.: Applications of nanotechnologies in medical practice. Injury. Int. J. Care Injured 36, 6–13 (2005)

    Google Scholar 

  46. Goodman, M.B., Lumpkin, E.A., Ricci, A., Tracey, W.D., Kernan, M., Nicolson, T.: Molecules and mechanisms of mechanotransduction. The Journal of Neuroscience 24, 9220–9222 (2004)

    Article  Google Scholar 

  47. Brigger, I., Dubernet, C., Couvreur, P.: Nanoparticles in cancer theraphy and diagnosis. Advance Drug Delivery Reviews 54, 631–651 (2002)

    Article  Google Scholar 

  48. Han, S.W., Nakamura, C., Obataya, I.: A molecular delivery system by using afm and nanoneedle. Journal of Biosensors & Bioelectronics 20, 2120–2125 (2005)

    Article  Google Scholar 

  49. Raimann, P.R., Hochgatterer, N.S., Korepp, C., Moeller, K.C., Winter, M., Schroettner, H., Hofer, F., Besenhard, J.O.: Monitoring dynamics of electrode reactions in li-ion batteries by in situ esem. IONICS 12, 253–255 (2006)

    Article  Google Scholar 

  50. Smith, A.J., Atkinson, H.V., Hainsworth, S.V., Dong, H.B., Haghayeghi, R.: In situ environmental scanning electron microscopy (esem) of semi-solid samples. Semi-Solid Processing of Alloys and Composites Solid State Phenomena, 116–117 (2006)

    Google Scholar 

  51. Johnston, G.C., Pringle, J.R., Hartwell, L.H.: Coordination of growth with the cell division in the yeast saccharomyces cerevisiae. Experimental Cell Research 105, 79–98 (1977)

    Article  Google Scholar 

  52. Thomas, K.C., Dawson, P.S.S., Gamborg, B.L.: Differential growth rates of candida utilis mother and daughter cells under phase cultivation. Journal of Bacteriology 141, 1–9 (1980)

    Google Scholar 

  53. Tan, Y., Sun, D., Huang, W., Che, S.H.: Mechanical modeling of biological cells in microinjection. IEEE Transactions on Nanobioscience 7, 257–266 (2008)

    Article  Google Scholar 

  54. Sokabe, M., Sachs, F., Jing, Z.: Quantitative video microscopy of patch clamped membranes stress, strain, capacitance, and stretch channel activation. Biophys. J. 59, 722–728 (1991)

    Article  Google Scholar 

  55. Radmacher, M., Fritz, M., Hansma, P.K.: Imaging soft samples with the atomic force microscope: Gelatin in water and propanol. Biophysical Journal 69, 264–270 (1995)

    Article  Google Scholar 

  56. Ahimou, F., Touhami, A., Dufrene, Y.F.: Real-time imaging of the surface topography of living yeast cells by atomic force microscopy. Yeast 20, 25–30 (2003)

    Article  Google Scholar 

  57. De-Deus, G., Paciornik, S., Mauricio, M.H.P., Prioli, R.: Real-time atomic force microscopy of root dentine during demineralization when subjected to chelating agents. International Endodontic Journal 39, 683–692 (2006)

    Article  Google Scholar 

  58. Engel, A., Müller, D.J.: Observing single biomolecules at work with the atomic force microscope. Nature Structural Biology 7 (2000)

    Google Scholar 

  59. Timoshenko, S.P., Gere, J.M.: Theory of elastic stability, 2nd edn. McGraw Hill, New York (1961)

    Google Scholar 

  60. Ahmad, M.R., Nakajima, M., Kojima, S., Homma, M., Fukuda, T.: In situ single cell mechanics characterization of yeast cells using nanoneedles inside environmental sem. IEEE Transactions on Nanotechnology 7, 607–616 (2008)

    Article  Google Scholar 

  61. Wu, H.W., Kuhn, T., Moy, V.T.: Mechanical properties of l929 cells measured by atomic force microscopy: Effects of anticytoskeletal drugs and membrane crosslinking. Scanning 20, 389–397 (1998)

    Article  Google Scholar 

  62. Li, X., Bhushan, B.: A review of nanoindentation continuous stiffness measurement technique and its applications. Materials Characterization 48, 11–36 (2002)

    Article  Google Scholar 

  63. Radok, J.R.M.: Viscoelastic stress analysis. Quart. Appl. Math. 15, 198–202 (1957)

    MathSciNet  MATH  Google Scholar 

  64. Lee, E.H., Radok, J.R.M.: The contact problems for viscoelastic bodies. J. Appl. Math. 27, 438–444 (1960)

    MathSciNet  MATH  Google Scholar 

  65. Lee, E.H.: Stress analysis in visco-elastic bodies. Quart. Appl. Math. 13, 183–190 (1955)

    MathSciNet  MATH  Google Scholar 

  66. Cheng, Y.-T., Cheng, C.-M.: Relationships between initial unloading slope, contact depth, and mechanical properties for spherical indentation in linear viscoelastic solids. Materials Science and Engineering A 409, 93–99 (2005)

    Article  Google Scholar 

  67. Sato, M., Ohshima, N., Nerem, R.M.: Viscoelastic properties of cultured porcine aortic endothelial cells exposed to shear stress. J. Biomech. 29, 461–467 (1996)

    Article  Google Scholar 

  68. Thoumine, O., Ott, A.: Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. J. Cell Sci. 110, 2109–2116 (1997)

    Google Scholar 

  69. Stenson, J.D., Thomas, C.R., Hartley, P.: Modelling the mechanical properties of yeast cells. Chemical Engineering Science 64, 1892–1903 (2009)

    Article  Google Scholar 

  70. Lee, E.H., Radok, J.R.M.: The contact problem for viscoelastic bodies. Journal of Applied Mechanics 27, 438–444 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  71. Cheng, L., Xia, X., Yu, W., Scriven, L.E., Gerberich, W.W.: Flat-punch indentation of viscoelastic material. Journal of Polymer Science: Part B: Polymer Physics 38, 10–22 (2000)

    Article  Google Scholar 

  72. Lu, H., Wang, B., Ma, J., Huang, G., Viswanathan, H.: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7, 189–207 (2003)

    Article  Google Scholar 

  73. Cheng, Y.-T., Cheng, C.-M.: Relationships between initial unloading slope, contact depth, and mechanical properties for spherical indentation in linear viscoelastic solids. Materials Science and Engineering A 409, 93–99 (2005)

    Article  Google Scholar 

  74. Gibson, C.T., Watson, G.S., Myhra, S.: Determination of the spring constants of probes for force microscopy/spectroscopy. Nanotechnology 7, 259–262 (1996)

    Article  Google Scholar 

  75. Mancini, M., Moresi, M.: Rheological behaviour of bakers yeast suspension. Journal of Food Engineering 44, 225–231 (2000)

    Article  Google Scholar 

  76. Lo Presti, S., Moresi, M.: Development of a novel integrated membrane process for citric acid and production by yarrowia lipolytica. In: Fourth Italian Conference on Chemical and Process Engineering (IChea P4), Florence, Italy, pp. 411–414 (1999)

    Google Scholar 

  77. Speer, R.A., Durance, T.D., Tung, M.A., Thou, J.: Colloidal properties of flocculent and nonflocculent brewing yeast suspensions. Biotechnology Progress 9, 267–272 (1993)

    Article  Google Scholar 

  78. Tolic-Norrelykke, I.M., Munteanu, E.-L., Thon, G., Oddershede, L., Berg-Sorensen, K.: Anomalous diffusion in living yeast cells. Physical Review Letters 93, 1–4 (2004)

    Article  Google Scholar 

  79. Cheng, Y.-T., Cheng, C.-M.: Relationship between contact stiffness, contact depth, and mechanical properties for indentation in linear viscoelastic solids using axisymmetric indenters. Struct. Control Health Monit. 13, 561–569 (2006)

    Article  Google Scholar 

  80. Hwang, D.S., Sim, S.B., Cha, H.J.: Cell adhesion biomaterial based on mussel adhesive protein fused with rgd peptide. Biomaterials 28, 4039–4046 (2007)

    Article  Google Scholar 

  81. Klotz, S.A., Drutz, D.J., Zajic, J.E.: Factors governing adherence of candida species to plastic surfaces. Infection and Immunity 50, 97–101 (1985)

    Google Scholar 

  82. Kim, M., Ahn, J.W., Jin, U.H., Choi, D., Paek, K.H., Pai, H.S.: Activation of the programmed cell death pathway by inhibition of proteasome function in plants. Journal of Biological Chemistry 278, 19406–19415 (2003)

    Article  Google Scholar 

  83. Chu, Y.S., Thomas, W.A., Eder, O., Pincet, F., Perez, E., Thiery, J.P., Dufour, S.: Force measurements in E-cadherin?mediated cell doublets reveal rapid adhesion strengthened by actin cytoskeleton remodeling through Rac and Cdc42. The Journal of Cell Biology 167, 1183 (2004)

    Article  Google Scholar 

  84. Puech, P.H., Poole, K., Knebel, D., Muller, D.J.: A new technical approach to quantify cell-cell adhesion forces by AFM. Ultramicroscopy 106, 637–644 (2006)

    Article  Google Scholar 

  85. Abbott, J.J., Nagy, Z., Beyeler, F., Nelson, B.J.: Robotics in the small, part I: Microbotics. IEEE Robotics & Automation Magazine 14, 92–103 (2007)

    Article  Google Scholar 

  86. Dembo, M., Torney, D., Saxman, K., Hammer, D.: The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proceedings of the Royal Society of London. Series B. Biological Sciences 234, 55–83 (1988)

    Article  Google Scholar 

  87. King, M.A.: Detection of deal cells and measurement of cell killing by flow cytometry. J. Immunol. Methods 243, 3–12 (2000)

    Article  Google Scholar 

  88. Bonorat, A., Mares, D.: A simple colorimetric method for detecting cell viability in cultures of eukaryotic microorganisms. Current Microbiology 7, 217–222 (1982)

    Article  Google Scholar 

  89. Kucsera, J., Yarita, K., Takeo, K.: Simple detection method for distinguishing dead and living yeast colonies. Journal of Microbiological Methods 41, 19–21 (2000)

    Article  Google Scholar 

  90. Raicu, V., Raicu, G., Turcu, G.: Dielectric properties of yeast cells as simulated by the two-shell model. Biochimica et Biophysica Acta 1274, 143–148 (1996)

    Article  Google Scholar 

  91. Bianchi, H., Fernandez-Prini, R.: The conductivity of dilute electrolyte solutions: Expanded lee and wheaton equation for symmetrical, unsymmetrical and mixed electrolytes. Journal of Solution Chemistry 22, 557–570 (1993)

    Article  Google Scholar 

  92. Kuyucak, S., Chung, S.-H.: Temperature dependence of conductivity in electrolyte solutions and ionic channels of biological membranes. Biophysical Chemistry 52, 15–24 (1994)

    Article  Google Scholar 

  93. Bester-Rogac, M., Habe, D.: Modern advances in electrical conductivity measurements of solutions. Acta Chim. Slov. 53, 391–395 (2006)

    Google Scholar 

  94. Moriguchi, T., Urushiyama, S., Hisamoto, N., Iemura, S., Uchida, S., Natsume, T., Matsumoto, K., Shibuya, H.: WNK1 Regulates Phosphorylation of Cation-Chloride-Coupled Kinases, SPAK and OSR1. J. Biol. Chem. 280, 42685–42693 (2005)

    Article  Google Scholar 

  95. O’Kane, C.J.: Modelling human diseases in Drosophila and Caenorhabditis. Seminars in Cell & Developmental Biology 14(1), 3–10 (2003)

    Article  Google Scholar 

  96. Sakaguchi-Nakashima, A., Meir, J., Jin, Y., Matsumoto, K., Hisamoto, N.: LRK-1, a C. elegans PARK8-related Kinase, Regulates Axonal-dendritic Polarity of SV Proteins. Curr. Biol. 17, 592–598 (2007)

    Article  Google Scholar 

  97. Wood, W.B.: The Nematode Caenorhabditis Elegans, p. 38. Cold Spring Harbor Laboratory Pr. (1988)

    Google Scholar 

  98. Nakajima, M., Ahmad, M.R., Kojima, S., Homma, M., Fukuda, T.: Local Stiffness Evaluation for Alive C. elegans by Environmental-SEM Nanorobotic Manipulation System. In: Proc. of the 2009 Int. Symposium on Micromechatronics and Human Science (MHS 2009), pp. 638–643 (2009)

    Google Scholar 

  99. Nakajima, M., Akimoto, H., Hirano, T., Kojima, M., Hisamoto, N., Homma, M., Fukuda, T.: Biological Specimen Viability Analysis by Hybrid Microscope Combined Optical Microscope and Environmental-SEM. In: Proceedings of 2010 IEEE Nanotech. Materials and Devices Conference (IEEE-NMDC 2010), pp. 315–320 (2010)

    Google Scholar 

  100. Nakajima, M., Ahmad, M.R., Kojima, S., Homma, M., Fukuda, T.: Local Stiffness Measurements of C. elegans by Buckling Nanoprobes inside and Environmental SEM. In: Proc. of the 2009 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS2009), pp. 1849–1854 (2009)

    Google Scholar 

  101. Nakajima, M., Hirano, T., Kojima, M., Hisamoto, N., Homma, M., Fukuda, T.: Direct Nano-injection Method by Nanoprobe Insertion based on E-SEM Nanorobotic Manipulation under Hybrid Microscope. In: Proc. of the 2011 IEEE Int. Conf. on Robotics and Automation (ICRA 2011), pp. 4139–4144 (2011)

    Google Scholar 

  102. O’Mara, W.C., Herring, R.B., Hunt, L.P.: Handbook of Semiconductor Silicon Technology. Noyes Publications (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Fukuda .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fukuda, T., Arai, F., Nakajima, M. (2013). Biological Cell Manipulation/Measurement/ Analysis under E-SEM. In: Micro-Nanorobotic Manipulation Systems and Their Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36391-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36391-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36390-0

  • Online ISBN: 978-3-642-36391-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics