Skip to main content

Introduction of Micro-Nanorobotic Manipulation Systems

  • Chapter

Abstract

Technology has been moving toward greater control of the structure of matter for millennia. Progress in science and technology over the past decades suggest the feasibility of achieving thorough control of the molecular structure of matter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feynman, R.P.: There’s Plenty of Room at the Bottom. Caltech’s Engineering and Science 23, 22–36 (1960)

    Google Scholar 

  2. Nanotechnology Research Directions: Interagency Working Group on Nanoscience, Engineering and Technology (IWGN) Workshop Report (Vision for Nanotechnology R&D in the Next Decade), Washington D.C. (September 1999)

    Google Scholar 

  3. National Nanotechnology Initiative: Leading to the Next Industrial Revolution, A Report by the Interagency Working Group on Nanoscience, Engineering and Technology, Committee on Technology, National Science and Technology Council, Washington D.C. (February 2000)

    Google Scholar 

  4. Drexler, K.: Nanosystems: Molecular Machinery, Manufacturing and Computation. Wiley Inter Science (1992)

    Google Scholar 

  5. Iijima, S.: Helical Microtubules of Graphitic Carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  6. Kawai, T.: Introduction to Nanotechnology, Ohmsha (2002) (in Japanese)

    Google Scholar 

  7. Degrado, W.F.: Design of Peptides and Proteins. Adv. Protein Chem. 39, 51–124 (1998)

    Article  Google Scholar 

  8. Lehn, J.M.: Supramolecular Chemistry: Concepts and Perspectives. VCH Verlagesellschaft (1995) (Japanese Translation)

    Google Scholar 

  9. Whitesides, G.M., Grzybowski, B.: Self-Assembly at All Scales. Science 295, 2418–2421 (2002)

    Article  Google Scholar 

  10. Fujita, M., Fujita, N., Ogura, K., Yamaguchi, K.: Spontaneous Assembling of Ten Small Components into a Three-Dimensionally Interlocked Compound Consistingof the Same Two Cage Frameworks. Nature 400, 52–55 (1999)

    Article  Google Scholar 

  11. Binnig, G., Rohrer, H., Gerber, C., Weibel, E.: Surface Studies by Scanning Tunneling Microscopy. Phys. Rev. Lett. 49, 57–61 (1982)

    Article  Google Scholar 

  12. Avouris, P.: Manipulation of Matter at the Atomic and Molecular Levels. Acc. Chem. Res. 28, 95–102 (1995)

    Article  Google Scholar 

  13. Crommie, M.F., Lutz, C.P., Eigler, D.M.: Confinement of Electrons to Quantum Corrals on a Metal Surface. Science 262, 218–220 (1993)

    Article  Google Scholar 

  14. Whitman, L.J., Stroscio, J.A., Dragoset, R.A., Cellota, R.J.: Manipulation of Adsorbed Atoms and Creation of New Structures on Room-Temperature Surfaces with a Scanning Tunneling Microscope. Science 251, 1206–1210 (1991)

    Article  Google Scholar 

  15. Lyo, I.-W., Avouris, P.: Field-Induced Nanometer-Scale to Atomic-Scale Manipulation of Silicon Surfaces with the STM. Science 253, 173–176 (1991)

    Article  Google Scholar 

  16. Dujardin, G., Walkup, R.E., Avouris, P.: Dissociation of Individual Molecules with Electrons From the Tip of a Scanning Tunneling Microscope. Science 255, 1232–1235 (1992)

    Article  Google Scholar 

  17. Shen, T.C., Wang, C., Abeln, G.C., Tucker, J.R., Lyding, J.W., Avouris, P., Walkup, R.E.: Atomic-Scale Desorption Through Electronic and Vibrational-Excitation Mechanisms. Science 268, 1590–1592 (1995)

    Article  Google Scholar 

  18. Cuberes, M.T., Schittler, R.R., Gimzewski, J.K.: Room-Temperature Repositioning of Individual C60Molecules at Cu Steps: Operation of a Molecular Counting Device. Appl. Phys. Lett. 69, 3016–3018 (1996)

    Article  Google Scholar 

  19. Lee, H.J., Ho, W.: Single-Bond Formation and Characterization with a Scanning Tunneling Microscope. Science 286, 1719–1722 (1999)

    Article  Google Scholar 

  20. Yamamoto, T., Kurosawa, O., Kabata, H., Shimamoto, N., Washizu, M.: Molecular Surgery of DNA Based on Electrostatic Micromanipulation. In: Proc. of the France-Japan Workshop from Nano to Micro Science and Technology Through Microsystems, pp. 38–43 (1998)

    Google Scholar 

  21. Haber, C., Wirtz, D.: Magnetic Tweezers for DNA Micromanipulation. Rev. Sci. Instrum. 71, 4561–4570 (2000)

    Article  Google Scholar 

  22. Schaefer, D.M., Reifenberger, R., Patil, A., Andres, R.P.: Fabrication of Two-Dimensional Arrays of Nanometer-Size Clusters with the Atomic force Microscope. Appl. Phys. Lett. 66, 1012–1014 (1995)

    Article  Google Scholar 

  23. Junno, T., Deppert, K., Montelius, L., Samuelson, L.: Controlled Manipulation of Nanoparticles with an Atomic force Microscope. Appl. Phys. Lett. 66, 3627–3629 (1995)

    Article  Google Scholar 

  24. Sheehan, P.E., Lieber, C.M.: Nanomachining, Manipulation and Fabrication by Force Microscopy. Nanotechnology 7, 236–240 (1996)

    Article  Google Scholar 

  25. Baur, C., Gazen, B.C., Koel, B., Ramachandran, T.R., Requicha, A.A.G., Zini, L.: Robotic Nanomanipulation with a Scanning Probe Microscope in a Networked Computing Environment. J. Vac. Sci. & Tech. B 15, 1577–1580 (1997)

    Article  Google Scholar 

  26. Resch, R., Baur, C., Bugacov, A., Koel, B.E., Madhukar, A., Requicha, A.A.G., Will, P.: Building and Manipulating 3-D and Linked 2D Structures of Nanoparticles Using Scanning Force Microscopy. Langmuir 14, 6613–6616 (1998)

    Article  Google Scholar 

  27. Hu, J., Zhang, Z.H., Ouyang, Z.Q., Chen, S.-F., Li, M.Q., Yang, F.J.: Stretch and Align Virus in Nanometer Scale on an Atomically Flat Surface. J. Vac. Sci. & Tech., B 16, 2841–2843 (1998)

    Article  Google Scholar 

  28. Sitti, M., Horiguchi, S., Hashimoto, H.: Controlled Pushing of Nanoparticles: Modeling and Experiments. IEEE/ASME Trans. on Mechatronics 5(2), 199–211 (2000)

    Article  Google Scholar 

  29. Guthold, M., Falvo, M.R., Matthews, W.G., Paulson, S., Washburn, S., Erie, D.A., Superfine, R., Brooks Jr., F.P., Taylor II, R.M.: Controlled Manipulation of Molecular Samples with the Nanomanipulator. IEEE/ASME Transactions on Mechatronics 5, 189–198 (2000)

    Article  Google Scholar 

  30. Falvo, M.R., Clary, G.J., Taylor, R.M., Chi, V., Brooks, F.P., Washburn, S., Superfine, R.: Bending and Buckling of Carbon Nanotubes Under Large Strain. Nature 389, 582–584 (1997)

    Article  Google Scholar 

  31. Falvo, M.R., Taylor II, R.M., Helser, A., Chi, V., Brooks Jr., F.P., Washburn, S., Superfine, R.: Nanometre-Scale Rolling and Sliding of Carbon Nanotubes. Nature 397, 236–238 (1999)

    Article  Google Scholar 

  32. Arai, F., Andou, D., Fukuda, T.: Micro Manipulation Based on Micro Physics–Strategy Based on Attractive Force Reduction and Stress Measurement. In: Proc. of IEEE/RSJ Int. Conf. on Intelligent Robotics and Systems, vol. 2, pp. 236–241 (1995)

    Google Scholar 

  33. Dong, L.X., Arai, F., Fukuda, T.: 3-D Nanorobotic Manipulations of Nanometer Scale Objects. J. of Robotics and Mechatronics 13(2), 146–153 (2001)

    Google Scholar 

  34. Tanikawa, T., Arai, T., Saeki, M.: Two-Finger Micro Hand. In: Proc. IEEE International Conference on Robotics and Automation, May 21-27, pp. 1674–1679 (1995)

    Google Scholar 

  35. Lin, Y.C., Yamanishi, Y., Fukuda, T., Arai, F.: On-chip cell manipulation systems -Part 3: Local temperature measurement and cell immobilization with thermosensitive gel-. In: Proc. of the 2007 JSME Conf. on Robotics and Mechatronics, 2A1-O07 (2007)

    Google Scholar 

  36. Yamanishi, Y., Teramoto, J., Magariyama, Y., Ishihama, A., Fukuda, T., Arai, F.: On-chip Cell Immobilization and Monitoring System Using Thermosensitive Gel Controlled by Suspended Polymeric Microbridge. IEEE Trans. on NanoBiosci. 8(4), 312–317 (2009)

    Article  Google Scholar 

  37. Dertinger, S.K.W., Chiu, D.T., Jeon, N.L., Whitesides, G.M.: Generation of Gradients Having Complex Shapes Using Microfluidic Networks. Anal. Chem. 73, 1240–1246 (2001)

    Article  Google Scholar 

  38. Huang, S.H., Tan, W.H., Tseng, F.G., Takeuchi, S.: A monolithically three-dimensional flow-focusing device for formation of single/double emulsions in closed/open microfluidic systems. J. Micromech. Microeng. 16, 2336–2344 (2006)

    Article  Google Scholar 

  39. Nisisako, T., Torii, T., Higuchi, T.: Droplet Formation in a Microchannel Network. Lab on a Chip 2, 24–26 (2002)

    Article  Google Scholar 

  40. Suzuki, H., Tabata, K.V., Noji, H., Takeuchi, S.: Development of an Assay System for ABC Transporters Reconstituted in an Artificial Lipid Bilayer. In: Proc. of 10th Int. Conf. on Miniaturized Systems for Chem. and Life Sci., pp. 1363–1365 (2006)

    Google Scholar 

  41. Harnack, O., Hospach, I., Yasuda, A.: Fabrication of PDMS-Based Nanochannels for Enzymatic Processing and Detection of Biomolecules. In: Proc. of 11th Int. Conf. on Miniaturized Systems for Chem. and Life Sci., pp. 1601–1603 (2007)

    Google Scholar 

  42. Hibara, A., Saito, T., Kim, H.B., Tokeshi, M., Ooi, T., Nakao, M., Kitamori, T.: Nanochannels on a Fused-Silica Microchip and Liquid Properties Investigation by Timed-Resolved Fluorescence Measurements. Anal. Chem. 74, 6170–6176 (2002)

    Article  Google Scholar 

  43. Kimura, Y., Yanagimachi, R.: Intracytoplasmic Sperm Injection in the Mouse. Biology of Reproduction 52, 709–720 (1995)

    Article  Google Scholar 

  44. Haulot, G., Benahmed, A.J., Ho, C.: Optoelectronic Reconfigurable Microchannels. In: Proc. of MEMS 2011, pp. 53–56 (2011)

    Google Scholar 

  45. Yu Chiou, P., Ohta, A.T., Wu, M.C.: Massively parallel manipulation of single cells and microparticles using optical images. Nature 436, 370–372 (2005)

    Article  Google Scholar 

  46. Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., Chu, S.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–291 (1986)

    Article  Google Scholar 

  47. Mio, C., Marr, D.W.M.: Optical Trapping for the Manipulation of Colloidal Particles. Adv. Mater. 12, 917–920 (2000)

    Article  Google Scholar 

  48. Arai, F., Sakami, T., Yoshikawa, K., Maruyama, H., Fukuda, T.: Synchronized Laser Micro-manipulation of Microtools for Assembly of Microbeads and Indirect Manipulation of Microbe. In: Proceedings of the 2003 IEEE/RSJ Int’l Conf. on Intelligent Robot and Systems, pp. 2121–2126 (2003)

    Google Scholar 

  49. Arai, F., Yoshikawa, K., Sakami, T., Fukuda, T.: Synchronized laser micromanipulation of multiple targets along each trajectory by single laser. Appl. Phys. Lett. 85(19), 4301–4303 (2004)

    Article  Google Scholar 

  50. Binnig, G., Quate, C.F., Gerber, C.: Atomic force Microscope. Phys. Rev. Lett. 56, 93–96 (1986)

    Article  Google Scholar 

  51. Ashkin, A., Dziedzic, J.M.: Optical Trapping and Manipulation of Viruses and Bacteria. Science 235, 1517–1520 (1987)

    Article  Google Scholar 

  52. Crick, F.H.C., Hughes, A.F.W.: Exp. Cell Res. 1, 37 (1950)

    Article  Google Scholar 

  53. Yu, M.F., Dyer, M.J., Skidmore, G.D., Rohrs, H.W., Lu, X.K., Ausman, K.D., Von Ehr, J.R., Ruoff, R.S.: Three-Dimensional Manipulation of Carbon Nanotubes Under a Scanning Electron Microscope. Nanotechnology 10, 244–252 (1999)

    Article  Google Scholar 

  54. Dong, L.X., Arai, F., Fukuda, T.: 3D Nanorobotic Manipulation of Nano-Order Objects Inside SEM. In: Proc. of the 2000 International Symposium on Micromechatronics and Human Science, Nagoya, Japan, pp. 151–156 (2000)

    Google Scholar 

  55. Eigler, D.M., Schweizer, E.K.: Positioning Single Atoms with a Scanning Tunneling Microscope. Nature 344, 524–526 (1990)

    Article  Google Scholar 

  56. Fukuda, T., Arai, F.: Prototyping Design and Automation of Micro/Nano Manipulation System. In: Proc. of IEEE Int’l Conf. on Robotics and Automation (ICRA 2000), San Francisco, U.S.A., vol. 1, pp. 192–197 (2000)

    Google Scholar 

  57. Jung, T.A., Schlittler, R.R., Gimzewski, J.K., Tang, H., Joachim, C.: Controlled Room-Temperature Positioning of Individual Molecules: Molecular Flexure and Motion. Science 271, 181–1846 (1996)

    Article  Google Scholar 

  58. Lee, G.U., Chrisey, L.A., Colton, R.J.: Direct Measurement of the Forces Between Complementary Stands of DNA. Science 266, 771–773 (1994)

    Article  Google Scholar 

  59. Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S.: Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes. Science 287, 637–640 (2000)

    Article  Google Scholar 

  60. Wang, Z.L.: Properties of Nanobeletsnad Nanotubes Measured by In Situ TEM. Microscopy and Microanalysis 10, 158–166 (2004)

    Google Scholar 

  61. Ikuhara, Y., Wang, L.: Properties of Nanobeletsand Nanotubes Measured by In Situ TEM. Microscopy and Microanalysis 10, 158–166 (2004)

    Article  Google Scholar 

  62. Eigler, D.M., Schweizer, E.K.: Positioning Single Atoms with a Scanning Electron Microscope. Nature 344, 524–526 (1990)

    Article  Google Scholar 

  63. Hosoki, S., Hosaka, S., Hasegawa, T.: Surface modification of MoS2 using STM. Appl. Surf. Sci. 60/61, 643 (1992)

    Article  Google Scholar 

  64. Hertel, T., Martel, R., Avouris, P.: Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces. J. Phys. Chem. B 102(6), 910–915 (1998)

    Article  Google Scholar 

  65. Li, G., Xi, N., Yu, M., Fung, W.-K.: Development of Augmented Reality System for AFM based Nanomanipualiton. IEEE Trans. on Mechatronics 9, 358–365 (2004)

    Article  Google Scholar 

  66. Li, G., Xi, N., Chen, H., Pomeroy, C.: Videolized” Atomic Force Microscopy for Interactive Nanomanipulation and Nanoassembly. IEEE Tran. on Nanotech. 4, 605–615 (2005)

    Article  Google Scholar 

  67. Requicha, A.A.G., Arbuckle, D.J., Mokaberi, B., Yun, J.: lgorithms and Software for Nanomanipulation with Atomic Force Microscopes. Int’l J. Robotics Research 28 (2009)

    Google Scholar 

  68. Sitti, M., Hashimoto, H.: Teleoperated Touch Feedback from the Surfaces at the Nanoscale: Modeling and Experiments. IEEE Trans. on Mechatronics 8, 287–298 (2003)

    Article  Google Scholar 

  69. Nakao, M., Tsuchiya, K., Matsumoto, K., Hatamura, Y.: Micro Handling with Rotational Needle-Type Tools under Realtime Observation. Annals of the CIRP 50, 9–12 (2001)

    Article  Google Scholar 

  70. Zyvex Corporation, http://www.zyvex.com/

  71. Saito, S., Miyazaki, H.T., Sato, T., Takahashi, K.: Kinematics of Mechanical and AdhesionalMicromanipulation under a Scanning Electron Microscope. J. of Applied Physics 92, 5140–5149 (2002)

    Article  Google Scholar 

  72. Kasaya, T., Miyazaki, H.T., Saito, S., Koyano, K., Yamaura, T., Sato, T.: Image-based Autonomous Micromanipulation System for Arrangement of Spheres in a Scanning Electron Microscope. Rev. of Scientific Instruments 75, 2033–2042 (2004)

    Article  Google Scholar 

  73. Sardan, O., Eichhorn, V., Petersen, D.H., Fatikow, S., Sigmund, O., Boggild, P.: Rapid prototyping of nanotube-based devices using topology-optimized microgrippers. Nanotechnology 19(495503), 9p. (2008)

    Google Scholar 

  74. Nanofactory Instruments, http://www.nanofactory.com/

  75. Kizuka, T., Yamada, K., Deguchi, S., Naruse, M., Tanaka, N.: Cross-sectional Time-resolved High-resolution Transmission Electron Microscopy of Atomic-Scale Contact and Noncontact-Type Scanning on Gold Surfaces. Phys. Rev. B 55, R7398–R7401 (1997)

    Article  Google Scholar 

  76. TokushiKizuka: Atomic configuration and mechanical and electrical properties of stable gold wires of single-atom width. Phys. Rev. B 77(155401), 11 (2008)

    Google Scholar 

  77. Cavalcanti, A., Shirinzadeh, B., Kretly, L.C.: Medical Nanorobotics for Diabetes Control. Nanomedicine: Nanotechnology, Biology, and Medicine 4, 127–138 (2008)

    Article  Google Scholar 

  78. Martel, S., Mohammadi, M., Felfoul, O., Lu, Z., Pouponneau, P.: Flagellated Magnetotactic Bacteria as Controlled MRI-trackable Propulsion and Steering Systems for Medical Nanorobots Operating in the Human Microvasculature. Intl. J. Robotics Research 28(4), 571–582 (2009)

    Article  Google Scholar 

  79. Martel, S., Felfoul, O., Mathieu, J.-B., Chanu, A., Tamaz, S., Mohammadi, M., Mankiewicz, M., Tabatabaei, N.: MRI-based Medical Nanorobotic Platform for the Control of Magnetic Nanoparticles and Flagellated Bacteria for Target Interventions in Human Capillaries. Intl. J. Robotics Research 28(9), 1169–1182 (2009)

    Article  Google Scholar 

  80. Patel, G.M., Patel, G.C., Patel, R.B., Patel, J.K., Patel, M.: Nanorobot: A Versatile Tool in Nanomedicine. J. Drug Targeting 14(2), 63–67 (2006)

    Article  Google Scholar 

  81. Cavalcanti, A., Shirinzadeh, B., Fukuda, T., Ikeda, S.: Nanorobot for Brain Aneurysm. Intl. J. Robotics Research 28(4), 558–570 (2009)

    Article  Google Scholar 

  82. Yokokawa, R., Takeuchi, S., Kon, T., Nishiura, M., Ohkura, R., Edamatsu, M., Sutoh, K., Fujita, H.: Hybrid Nanotransport System by Biomolecular Linear Motors. J. Microelectromechanical Systems 13(4), 612–619 (2004)

    Article  Google Scholar 

  83. Knoblaucha, M., Peters, W.S.: Biomimetic Actuators: where Technology and Cell Biology Merge. CMLS, Cell. Mol. Life Sci. 61, 2497–2509 (2004)

    Article  Google Scholar 

  84. Hiyama, S., Moritani, Y., Gojo, R., Takeuchi, S., Sutoh, K.: Biomolecular-motor-based Autonomous Delivery of Lipid Vesicles as Nano- or Microscale Reactors on a Chip. Lab on a Chip 10, 2741–2748 (2010)

    Article  Google Scholar 

  85. Soong, R.K., Bachand, G.D., Neves, H.P., Olkhovets, A.G., Craighead, H.G., Montemagno, C.D.: Powering an Inorganic Nanodevice with a Biomolecular Motor. Science 290, 1555–1558 (2000)

    Article  Google Scholar 

  86. Xi, J., Schmidt, J.J., Montemagno, C.D.: Self-assembled Microdevices Driven by Muscle. Nature Mater. 4, 180–184 (2005)

    Article  Google Scholar 

  87. Akiyama, Y., Iwabuchi, K., Furukawa, Y., Morishima, K.: Long-term and room temperature operable bioactuator powered by insect dorsal vessel tissue. Lab on a Chip 9, 140–144 (2009)

    Article  Google Scholar 

  88. Akiyama, Y., Hoshino, T., Iwabuchi, K., Morishima, K.: Design and Fabrication of Temperature-Tolerant Micro Bio-Robot Driven by Insect Heart Tissue. In: Proc. of 2010 Intl. Symposium on Micro-Nano Mechatronics and Human Sci., pp. 115–120 (2010)

    Google Scholar 

  89. Chee, J.-Y., Yoga, S.-S., Lau, N.-S., Ling, S.-C., Abed, R.M.M., Sudesh, K.: Bacterially Produced Polyhydroxyalkanoate (PHA): Converting Renewable Resources into Bioplastics. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology 2, 1395–1404 (2010)

    Google Scholar 

  90. Kitamoto, H.K., Shinozaki, Y., Cao, X., Morita, T., Konishi, M., Tago, K., Kajiwara, H., Koitabashi, M., Yoshida, S., Watanabe, T., Sameshima-Yamashita, Y., Nakajima-Kambe, T., Tsushima, S.: Phyllosphere yeasts rapidly break downbiodegradable plastics. AMB Express 1:44, 11 Pages (2011)

    Google Scholar 

  91. Suuronen, E.J., Sheardown, H., Newman, K.D., et al.: Building In Vitro Models of Organs. In: Kwang, W.J. (ed.) International Review of Cytology, pp. 137–173. Academic Press (2005)

    Google Scholar 

  92. Langer, R., Vacanti, J.P.: Tissue Engineering. Science 260, 920–926 (1993)

    Article  Google Scholar 

  93. Tsutsui, H., et al.: Efficient Dielectrophoretic Patterning of Embryonic Stem Cells in Energy Landscapes Defined by Hydrogel Geometries. Annals of Biomedical Engineering 38, 3777–3788 (2010)

    Article  Google Scholar 

  94. Tixier-Mita, A., et al.: A silicon micro-system for parallel gene transfection into arrayed cells. In: Proceedings of the uTAS 2004 Symposium. The Royal Society of Chemistry, pp. 180–182 (2004) ISBN 0-85404-896-0

    Google Scholar 

  95. Di Carlo, D., Aghdam, N., Lee, L.P.: Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Analytical Chemistry 78(14), 4925–4930 (2006)

    Article  Google Scholar 

  96. Yue, T., Nakajima, M., Ito, M., Kojima, M., Fukuda, T.: High speed laser manipulation of on-chip fabricated microstructures by replacing solution inside microfluidic channel. In: Proc. of the 2011 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2011), pp. 433–438 (2011)

    Google Scholar 

  97. Derda, R., Laromaine, A., Mammoto, A., Tang, S., Mammoto, T., Ingber, D., Whitesides, G.: Paper-supported 3Dcell culture for tissue-based bioassays. Proc. Nat. Acad. of Sci. 106, 18457–18462 (2009)

    Article  Google Scholar 

  98. Chan, V., Zorlutuna, P., Jeong, J.H., et al.: Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab on a Chip 10(16), 2062–2070 (2010)

    Article  Google Scholar 

  99. Uchida, T., Ikeda, S., Oura, H., Tada, M., Nakano, T., Fukuda, T., Matsuda, T., Negoro, M., Arai, F.: Development of biodegradable scaffolds basedon patient-specific arterial configuration. Journal of Biotechnology 133, 213–218 (2008)

    Article  Google Scholar 

  100. Yamada, A., Niikura, F., Ikuta, K.: A three-dimensional microfabrication system for biodegradable polymers with high resolution and biocompatibility. J. Micromech. Microeng. 18, 025035 (2008)

    Article  Google Scholar 

  101. Mironov, V., Visconti, R.P., Kasyanov, V., Forgacs, G., Drake, C.J., Markwald, R.R.: Organ printing: tissue spheroids as building blocks 30, 2164–2174 (2009)

    Google Scholar 

  102. Yamada, M., Utoh, R., Ohashi, K., Yamato, M., Okano, T., Seki, M.: Formation of Complex Hepatic Organoids Using Microfabricated Anisotropic Hydrogel Fibers. In: Proc. of the 15th International Conf. on Miniaturized Systems for Chemistry and Life Sciences, pp. 1385–1387 (2011)

    Google Scholar 

  103. Henmi, C., Nakamura, M., Nishiyama, Y., Yamaguchi, K., Mochizuki, S., Takiura, K., Nakagawa, H.: Development of an effective three dimensional fabrication technique using inkjet technology for tissue model samples. In: Proc. 6th World Congress on Alternatives & Animal Use in the Life Sciences, pp. 689–692 (2007)

    Google Scholar 

  104. Matsunaga, Y., Morimoto, Y., Takeuchi, S.: Molding cell beads for rapid construction of macroscopic 3D tissue architecture. Advanced Materials 23, H90–H94 (2011)

    Article  Google Scholar 

  105. Masuda, T., Takei, N., Nakano, T., Anada, T., Suzuki, O., Arai, F.: A microfabricated platform to form three-dimensional toroidal multicellular aggregate. Biomed. Microdevices 14, 1085–1093 (2012)

    Article  Google Scholar 

  106. Cheng, Y., Luo, X., Tsao, C.Y., Wu, H.C., Betz, J., Payne, G.F., Bentley, W.E., Rubloff, G.W.: Biocompatible multi-address 3D cell assembly in microfluidic devices using spatially programmable gel formation. Lab Chip 11, 2316–2318 (2011)

    Article  Google Scholar 

  107. Xu, F., Max Wu, C., Rengarajan, V., Finley, T.D., Keles, H.O., Sung, Y., Li, B., Gurkan, U.A., Demirci, U.: Three-Dimensional Magnetic Assembly of Microscale Hydrogels. Adv. Mater. 23, 4254–4260 (2011)

    Article  Google Scholar 

  108. Ota, H., Miki, N.: Microfluidic experimental platform for producing size-controlled three-dimensional spheroids. Sensors and Actuators A 169, 266–273 (2011)

    Article  Google Scholar 

  109. Mironov, V., Visconti, R.P., Kasyanov, V., Forgacs, G., Drake, C.J., Markwald, R.R.: Organ printing: Tissue spheroids as building blocks. Biomaterials 30, 2164–2174 (2009)

    Article  Google Scholar 

  110. Kuribayashi-Shigetomi, K., Onoe, H., Takeuch, S.: Cell Origami: Self-Folding of Three-Dimensional Cell-Laden Microstructures Driven by Cell Traction Force. Plos One 7(12), e51085, 8 (2012)

    Article  Google Scholar 

  111. Tan, J.L., Tien, J., Pirone, D.M., Gray, D.S., Bhadriraju, K., Chen, C.S.: Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. of Natl. Acad. Sci. U. S. A. 100(4), 1484–1489 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Fukuda .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fukuda, T., Arai, F., Nakajima, M. (2013). Introduction of Micro-Nanorobotic Manipulation Systems. In: Micro-Nanorobotic Manipulation Systems and Their Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36391-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36391-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36390-0

  • Online ISBN: 978-3-642-36391-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics