Advertisement

A High Order PID-Sliding Mode Control: Simulation on a Torpedo

  • Ahmed RhifEmail author
  • Zohra Kardous
  • Naceur Ben Hadj Braiek
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 452)

Abstract

Position and speed control of the torpedo present a real problem for the actuators because of the high level of system nonlinearity and because of the external disturbances. The nonlinear systems control is based on several different approaches, which include the sliding mode control. This chapter deals with the basic concepts, mathematics, and design aspects of a control for nonlinear systems that make the chattering effect lower. As solution to this problem we will adopt as a starting point the high order sliding mode approaches and then the PID-sliding surface. Simulation results show that this control strategy can attain excellent control performance with no chattering problem.

Keywords

Sliding mode control PID controller Chattering phenomenon Nonlinear system 

References

  1. 1.
    Miller J, Bevly DM (2013) A system for autonomous canine guidance. Int J Model Ident Control 20(1):33–46Google Scholar
  2. 2.
    Nam SQ, Kown SH, Yoo WS, Lee MH, Jeon WS (1993) Robust fuzzy control of o three fin torpedo. J Soc Nav Architects Jpn 173: 231–235Google Scholar
  3. 3.
    Rhif A, Kardous Z, Ben Hadj Braiek N (2011) A high order sliding mode-multimodel control of non linear system simulation on a submarine mobile. In: International multi-conference on systems, signals and devices, Tunisia, March 2011Google Scholar
  4. 4.
    Rhif A, Kardous Z, Hadj Braiek NB (2012) A sliding mode multimodel control for a sensorless photovoltaic system. J Sci Ind Res 71:418–424Google Scholar
  5. 5.
    Utkin VI (1977) Variable structure systems with sliding modes. IEEE Trans Autom Control 22(2):212–222CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Eker İ (2005) Sliding mode control with PID sliding surface and experimental application to an electromechanical plant. ISA Trans 45(1):109–118Google Scholar
  7. 7.
    Rhif A (2011) Position control review for a photovoltaic system: dual axis sun tracker. IETE Tech Rev 28:479–485Google Scholar
  8. 8.
    Rhif A (2011) A review note for position control of an autonomous underwater vehicle. IETE Tech Rev 28:486–493Google Scholar
  9. 9.
    Li Z, Shui-sheng Q (2005) Analysis and experimental study of proportional-integral sliding mode control for DC/DC converter. J Electron Sci Technol Chin 3(2)Google Scholar
  10. 10.
    Lee DS, Youn MJ (1989) Controller design of variable structure systems with nonlinear sliding surface. Electron Lett 25(25):1715–1716CrossRefGoogle Scholar
  11. 11.
    Emel’yanov SV (1963) On pecularities of variables structure control systems with discontinuous switching functions. Doklady ANSSR 153:776–778Google Scholar
  12. 12.
    Emel’yanov SV (1967) Variable structure control systems. Moscow, NoukaGoogle Scholar
  13. 13.
    Utkin VI, Young KD (1978) Methods for constructing discontinuity planes in multidimensional variable structure systems. Auto Remote control 166–170Google Scholar
  14. 14.
    Shi Y, Zhou C, Huang X, Yin Q (2012) Fault-tolerant sliding mode control for the interferometer system under the unanticipated faults. Int J Model Ident Control 16(4):353–362Google Scholar
  15. 15.
    Tzypkin YZ (1955) Theory of control relay systems. Gostekhizdat, MoscowGoogle Scholar
  16. 16.
    Anosov DV (1959) On stability of equilibrium points of relay systems. Autom Remote Control 2:135–149MathSciNetGoogle Scholar
  17. 17.
    Jie S, Yong Z, Chengliang Y (2012) Longitudinal brake control of hybrid electric bus using adaptive fuzzy sliding mode control. Int J Model Ident Control 15(3):147–155CrossRefGoogle Scholar
  18. 18.
    Rhif A, Kardous Z, Ben Hadj Braiek N (2013) A sliding mode-multimodel control for torque evolution of a double feed asynchronous generator. In: International conference on electrical engineering and software applications, Hammamet, 2013Google Scholar
  19. 19.
    Vaidyanathan S (2013) Global chaos synchronization of Liu-Yang systems via sliding mode control. In: International conference on control, engineering and information technology (CEIT’14). Sousse, TunisiaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ahmed Rhif
    • 1
    Email author
  • Zohra Kardous
    • 1
  • Naceur Ben Hadj Braiek
    • 1
  1. 1.Laboratoire des Systèmes AvancésEcole Polytechnique de Tunisie La MarsaTunisia

Personalised recommendations