Recent Advances in Nonsingular Terminal Sliding Mode Control Method

  • Shengbo Eben Li
  • Kun DengEmail author
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 452)


The terminal sliding mode (TSM) control method has become a hot topic in recent years due to its special merit on finite-time convergence and good robustness. One critical issue is how to balance the singularity of control law and the fast convergence of closed-loop system. The chapter reviews the research history of the singularity and introduces the recent advance on nonsingular and fast terminal sliding mode (NFTSM) control method. The synthesis of NFTSM controller synthesis is based on a newly proposed nonsingular fast terminal function and a terminal attractor with nonnegative exponential coefficient. Both theoretical analyses and computer simulations have proved its effectiveness under the condition that plant uncertainties are bounded.


Equilibrium Point External Disturbance Convergence Speed Fast Convergence Speed Terminal Slide Mode Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors greatly appreciate the NSF of China with grant number 51205228 for the support to this research.


  1. 1.
    Young KD, Utkin VI, Ozguner U (1996) A control engineer’s guide to sliding mode control. In: Proceedings of 1996 IEEE international workshop on variable structure systems, VSS’96, pp 1–14Google Scholar
  2. 2.
    Utkin VI (1993) Sliding mode control design principles and applications to electric drives. IEEE Trans Industr Electron 40(1):23–36CrossRefGoogle Scholar
  3. 3.
    Furuta K (1990) Sliding mode control of a discrete system. Syst Control Lett 14(2):145–152CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Xu H, Mirmirani MD, Ioannou PA (2004) Adaptive sliding mode control design for a hypersonic flight vehicle. J Guidance Control Dyn 27(5):829–838CrossRefGoogle Scholar
  5. 5.
    Koshkouei AJ, Burnham KJ, Zinober AS (2005) Dynamic sliding mode control design. IEE Proc Control Theory Appl 152(4):392–396CrossRefGoogle Scholar
  6. 6.
    Bouabdallah S, Siegwart R (2005) Backstepping and sliding-mode techniques applied to an indoor micro quadrotor. In: Proceedings of the 2005 IEEE international conference on robotics and automation, ICRA 2005, Apr 2005, pp 2247–2252Google Scholar
  7. 7.
    Shang A, Wang Z (2013) Adaptive backstepping second order sliding mode control of non-linear systems. Int J Model Ident Control 19(2):195–201CrossRefGoogle Scholar
  8. 8.
    Venkataraman ST, Gulati S (1991) Terminal sliding modes: a new approach to nonlinear control synthesis. In: Fifth International Conference on advanced robotics, 1991. ‘Robots in Unstructured Environments’, 91 ICAR., Jun 1991, pp 443–448Google Scholar
  9. 9.
    Zhuang KY, Zhang KQ (2002) Terminal sliding mode control for high-order nonlinear dynamic systems. J Zhejiang Univ 36(5):482–539 (Engineering Science)Google Scholar
  10. 10.
    Bhave M, Janardhanan S, Dewan L (2013) An efficient control of rigid robotic manipulator with uncertainties using higher order sliding mode control. Int J Model Ident Control 19(2):179–185CrossRefzbMATHGoogle Scholar
  11. 11.
    Du H, Li S (2012) Finite-time cooperative attitude control of multiple spacecraft using terminal sliding mode control technique. Int J Model Ident Control 16(4):327–333CrossRefGoogle Scholar
  12. 12.
    Man Z, Yu X H (1996). Terminal sliding mode control of MIMO linear systems. In: Proceedings of the 35th IEEE on decision and control, 1996, vol 4, pp 4619–4624Google Scholar
  13. 13.
    Wu Y, Yu X, Man Z (1998) Terminal sliding mode control design for uncertain dynamic systems. Syst Control Lett 34(5):281–287CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Man Z, Paplinski AP, Wu HR (1994) A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans Autom Control 39(12):2464–2469CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Yu X, Man Z, Wu Y (1997) Terminal sliding modes with fast transient performance. In: Proceedings of the 36th IEEE conference on decision and control, 1997, vol 2, pp 962–963Google Scholar
  16. 16.
    Yu S, Guo G, Man Z, Du J (2006) Global fast terminal sliding mode control for robotic manipulators. Int J Model Ident Control 1(1):72–79CrossRefGoogle Scholar
  17. 17.
    Kang Y, Xi HS, Ji HB, Wang J (2003) Fast terminal sliding mode control of uncertain multivariable linear systems. J Univ Sci Technol China 33(6):718–725MathSciNetGoogle Scholar
  18. 18.
    Yu S, Yu X, Man Z (2000) Robust global terminal sliding mode control of SISO nonlinear uncertain systems. In: Proceedings of the 39th IEEE conference on decision and control, vol 3, pp 2198–2203Google Scholar
  19. 19.
    Yu X, Man Z (2002) Fast terminal sliding-mode control design for nonlinear dynamical systems. IEEE Trans Circ Syst I Fundam Theory Appl 49(2):261–264CrossRefMathSciNetGoogle Scholar
  20. 20.
    Feng Y, Bao S, Yu XH (2002) Design method of non-singular terminal sliding mode control systems. Control Decis 17(2):194–198Google Scholar
  21. 21.
    Feng Y, Yu X, Man Z (2002) Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(12):2159–2167CrossRefMathSciNetGoogle Scholar
  22. 22.
    Feng Y, Yu X, Man Z (2001). Non-singular terminal sliding mode control and its application for robot manipulators. In: IEEE international symposium on circuits and systems, ISCAS, May 2001, vol 3, pp 545–548Google Scholar
  23. 23.
    Zhang KD, Hu YM, Hu ZH (2007) Sliding mode control of low chattering non-singular terminal. J Guangdong Univ Technol 24(3):32–36zbMATHGoogle Scholar
  24. 24.
    Hu JB, Shi MH, Zhang KY (2005) Terminal sliding mode control for a class of nonlinear systems. Control Theory Appl 22(3):495–502Google Scholar
  25. 25.
    Li SB, Li KQ, Wang JQ, Gao F (2009) Nonsingular and fast terminal sliding model control method. Inf Control 38(1):1–8Google Scholar
  26. 26.
    Yoshimura T (2012) Adaptive sliding mode control for uncertain discrete-time systems using an improved reaching law. Int J Model Ident Control 16(4):380–391CrossRefGoogle Scholar
  27. 27.
    Parra-Vega V, Hirzinger G (2000). Finite-time tracking for robot manipulators with singularity-free continuous control: a passivity-based approach. In: Proceedings of the 39th IEEE conference on decision and control, 2000, vol 5, pp 5085–5090Google Scholar
  28. 28.
    Soliman HM, Bayoumi EH, Soliman M (2012) Robust guaranteed-cost sliding control for brushless DC motors by LMI. Int J Model Ident Control 17(3):251–260CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.State Key Lab of Automotive Safety and Energy, Department of Automotive EngineeringTsinghua UniversityBeijingChina
  2. 2.Coordinated Science LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations