Advertisement

Synthesis of an Advanced State Feedback Control for Continuous Nonlinear Polynomial Systems

  • Houssem JerbiEmail author
  • Wiem Jebri Jemai
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 452)

Abstract

In this chapter, the problem of approximate linearization of affine nonlinear control systems by a static state feedback is considered. First of all, we propose an analytical method, based on the development into generalized Taylor series expansions and the Kronecker product tools, in order to simplify the complex implementation of the input-state feedback linearization formalism. Next, to improve the synthesized polynomial feedback control, the genetic algorithm, as an optimization method, is used. Finally, the new approach presented in this work is applied to investigate the control problem of a chemical reactor. Moreover, we prove that the controlled process is locally asymptotically stable in a wide region around the operating point, in the Lyapunov sense.

Keywords

Feedback linearization Polynomial nonlinear control Optimization routine Genetic algorithm Lyapunov stability 

References

  1. 1.
    Bacha A, Jerbi H (2008) Backward iteration approaches for the stability domain of estimation of discrete nonlinear polynomial systems. Int J Model Ident Control 5(4):313–319Google Scholar
  2. 2.
    Baili S, Guoyuan Q, Barend JVW (2012) Output feedback predictive control for uncertain non-linear switched systems. Int J Model Ident Control 17(3):195–205Google Scholar
  3. 3.
    Benhadj Braiek E, Rotella F (1995) State observer design for a class of nonlinear systems. SAMS 17:265–277Google Scholar
  4. 4.
    Bortoff S (1997) Approximate state-feedback linearization using spline functions. Automatica 33(8):1449–1458CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Brewer J (1978) Kronecker products and matrix calculus in system theory. IEEE Trans Circuits Syst 25(9):772–781CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Camilli F, Grüne L, Wirth F (2000) Zubov’s method for perturbed differential equations. In: Proceedings of the mathematical theory of networks and systemsGoogle Scholar
  7. 7.
    Chanchareon R, Pongsin N, Reeseewat P, Jiamluksanapaisal S (2006) Controller design based on computed feedback linearization. In: IEEE conference on robotics, automation and mechatronics, pp 1–6Google Scholar
  8. 8.
    Chiasson J, Bodson M (1993) Technical notes and correspondence. IEEE Trans Autom Control 38(11):1662–1666CrossRefMathSciNetGoogle Scholar
  9. 9.
    Choi H, Lim J (2005) Stabilizing a class of nonlinear systems based on approximate feedback linearization. IEICE Trans Fundam E88-A(6):1626–1630Google Scholar
  10. 10.
    Dongkai Z, Chaoli W, Jiqing Q, Hua C (2012) State-feedback stabilisation for stochastic non-holonomic systems with Markovian switching. Int J Model Ident Control 16(3):212–228CrossRefGoogle Scholar
  11. 11.
    Fuh C (2009) Optimal control of chaotic systems with input saturation using an input-state linearization scheme. Commun Nonlinear Sci Numer Simul 14(8):3424–3431CrossRefGoogle Scholar
  12. 12.
    Garc’ıa-Sandoval J, Gonzalez-Alvarez V, Castillo-Toledo B, Pelayo-Ortiz C (2008) Robust discrete control of nonlinear processes: application to chemical reactors. Compu Chem Eng 32(12):3246–3253CrossRefGoogle Scholar
  13. 13.
    Ge S, Sun Z, Lee T (2001) Nonregular feedback linearization for a class of second-order nonlinear systems. Automatica 37(11):1819–1824CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Goldberg D (1989) Genetic algorithms in search, optimization, and machine learning. Addison-wesley, BostonGoogle Scholar
  15. 15.
    Guardabassi G, Savaresi S (2001) Approximate linearization via feedback-an overview. Automatica 37(1):1–15CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Holland J (1992) Adaptation in natural and artifcial systems: an introductory analysis with applications to biology, control, and artifcial intelligence. The MIT Press, CambridgeGoogle Scholar
  17. 17.
    Hunt L, Su R, Meyer G (1983) Global transformations of nonlinear systems. IEEE Trans Autom Control 28(1):24–31CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Isidori A (1995) Nonlinear control systems. Springer Verlag, New YorkGoogle Scholar
  19. 19.
    Jemai W, Jerbi H, Abdelkrim M (2010a) A method based on the Monte Carlo optimization schemes for the control of nonlinear polynomial systems. In: Proceedings of the 6th WSEAS international conference on Dynamical systems and control, pp 184–189. World Scientific and Engineering Academy and Society (WSEAS)Google Scholar
  20. 20.
    Jemai W, Jerbi H, Abdelkrim M (2010b) Synthesis of an approximate feedback nonlinear control based on optimization methods. WSEAS Trans Syst Control 5(8):646–655Google Scholar
  21. 21.
    Jemai W, Jerbi H, Abdelkrim M (2011) Nonlinear state feedback design for continuous polynomial systems. Int J Control Autom Syst (IJCAS) 9(3):566-573Google Scholar
  22. 22.
    Jianfeng L, Youmei L, Zhiwu H, Weihua G, Huosheng H (2012), Modelling and control design for an electro-pneumatic braking system in trains with multiple locomotives. 17(2):99–108Google Scholar
  23. 23.
    Johansen T, Hunt K (2000) A computational approach to approximate input/state feedback linearization. In: Proceedings of the 39th IEEE conference on decision and Control, vol 5, pp 4467–4472Google Scholar
  24. 24.
    Khalil H, Grizzle J (2002) Nonlinear systems. Prentice hall, New JerseyGoogle Scholar
  25. 25.
    Kowalski K, Steeb W (1991) Nonlinear dynamical systems and Carleman linearization. World Scientific Publishing Co. Pte, Ltd, SingaporeGoogle Scholar
  26. 26.
    Lei C, Xiu-Juan Z, Huai-Yu W, Quan-Min Z, Yong-Ji W, Hassan N (2012) A new procedure for multi-mode sequential flocking with application to multiple non-holonomic mobile robot motion control: implementation and analysis. Int J Model Ident Control 16(1):50–59CrossRefGoogle Scholar
  27. 27.
    Marino R, Tomei P (1995) Nonlinear control design: geometric, adaptive and robust. Prentice Hall, New JerseyGoogle Scholar
  28. 28.
    McCann R (1979) Asymptotically stable dynamical systems are linear. Pac J Math 81(2): 475–479Google Scholar
  29. 29.
    Mehta S, Chiasson J (1998) Nonlinear control of a series DC motor: theory and experiment. IEEE Trans Industr Electron 45(1):134–141CrossRefGoogle Scholar
  30. 30.
    Nijmeijer H, Van der Schaft A (1990) Nonlinear dynamical control systems. Springer, New YorkGoogle Scholar
  31. 31.
    Ray W (1981) Advanced process control. McGraw-Hill Companies, New YorkGoogle Scholar
  32. 32.
    Rotella F, Dauphin-Tanguy G (1988) Nonlinear systems: identification and optimal control. Int J Control 48(2):525–544CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Qi-ming F, Quan L, Xio-yan W, Le Z (2011) Relevance feedback techniques and genetic algorithm for image retrieval based on multiple features. Int J Model Ident Control 14(4): 279–285Google Scholar
  34. 34.
    Sivanandam S, Deepa S (2008) Introduction to genetic algorithms. Springer, Berlin, New YorkGoogle Scholar
  35. 35.
    Slotine J, Li W et al (1991) Applied nonlinear control. Prentice hall, Englewood CliffszbMATHGoogle Scholar
  36. 36.
    Son J, Lim J (2008) Stabilization of approximately feedback linearizable systems using singular perturbation. IEEE Trans Autom Control 53(6):1499–1503CrossRefMathSciNetGoogle Scholar
  37. 37.
    Sontag E (1998) Mathematical control theory: deterministic finite dimensional systems. Springer, BerlinGoogle Scholar
  38. 38.
    Su R (1982) On the linear equivalents of nonlinear systems. Syst Control Lett 2(1):48–52CrossRefzbMATHGoogle Scholar
  39. 39.
    Tiaoping F, Shang YL (2011) An improved multi-objective particle swarm optimization algorithm. 12(1–2):66–71Google Scholar
  40. 40.
    Vannelli A, Vidyasagar M (1985) Maximal Lyapunov functions and domains of attraction for autonomous nonlinear systems. Automatica 21(1):69–80CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Vinodha R, Abraham Lincoln S (2011) Design and implementation of simple adaptive control schemes on simulated model of CSTR process. Int J Model Ident Control 14(3):159–169CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.College of Engineering of HailUniversity of HailHailKingdom of Saudi Arabia
  2. 2.Research Unit MACS High School of EngineeringUniversity of GabèsGabèsTunisia

Personalised recommendations