Advertisement

Advanced Control of Atomic Force Microscope for Faster Image Scanning

  • M. S. RanaEmail author
  • H. R. Pota
  • I. R. Petersen
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 452)

Abstract

In atomic force microscopy (AFM), the dynamics and nonlinearities of its nanopositioning stage are major sources of image distortion, especially when imaging at high scanning speed. This chapter discusses the design and experimental implementation of an observer-based model predictive control (OMPC) scheme which aims to compensate for the effects of creep, hysteresis, cross-coupling, and vibration in piezoactuators in order to improve the nanopositioning of an AFM. The controller design is based on an identified model of the piezoelectric tube scanner (PTS) for which the control scheme achieves significant compensation of its creep, hysteresis, cross-coupling, and vibration effects and ensures better tracking of the reference signal. A Kalman filter is used to obtain full-state information about the plant. The experimental results illustrate the use of this proposed control scheme.

Keywords

Atomic Force Microscopy Model Predictive Control Propose Control Scheme Prediction Horizon High Scanning Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Mr. Shane Brandon, SEIT, UNSW, Canberra, Australia for his technical support during the experimental tests.

References

  1. 1.
    Yong YK, Ahmed B, Moheimani SOR (2010) Atomic force microscopy with a 12-electrode piezoelectric tube scanner. Rev Sci Instrum 81(3):033 701–10Google Scholar
  2. 2.
    Meyer E, Hug HJ, Bennewitz R (2004) Scanning probe microscopy. Springer, BerlinGoogle Scholar
  3. 3.
    Sarid D (1994) Scanning force microscopy: with applications to electric, magnetic and atomic forces. Oxford University Press, OxfordGoogle Scholar
  4. 4.
    Fleming AJ, Aphale SS, Moheimani SOR (2010) A new method for robust damping and tracking control of scanning probe microscope positioning stages. IEEE Trans Nanotechnol 9(4):438–448CrossRefGoogle Scholar
  5. 5.
    Yong YK, Liu K, Moheimani SOR (2010) Reducing cross-coupling in a compliant XY nanopositioner for fast and accurate raster scanning. IEEE Trans Control Syst Technol 18(5):1172–1179CrossRefGoogle Scholar
  6. 6.
    Taylor ME (1993) Dynamics of piezoelectric tube scanners for scanning probe microscopy. Rev Sci Instrum 64(1):154–158CrossRefGoogle Scholar
  7. 7.
    Adriaens H, De Koning W, Banning R (2000) Modeling piezoelectric actuators. IEEE/ASME Trans Mechatron 5(4):331–341CrossRefGoogle Scholar
  8. 8.
    Rana MS, Pota HR, Petersen IR (2012) Improved control of atomic force microscope for high-speed image scanning. In: Australian control conference (AUCC). Sydney, pp 470–475Google Scholar
  9. 9.
    Bazaei A, Yong YK, Moheimani SOR, Sebastian A (2012) Tracking of triangular references using signal transformation for control of a novel AFM scanner stage. IEEE Trans Control Syst Technol 20(2):453–464CrossRefGoogle Scholar
  10. 10.
    Jung H, Shim JY, Gweon D (2001) Tracking control of piezoelectric actuators. Nanotechnology 12(1):14–20CrossRefGoogle Scholar
  11. 11.
    Croft D, Shedd G, Devasia S (2000) Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application. Proc Am Control Conf 3:2123–2128Google Scholar
  12. 12.
    Jung H, Shim JY, Gweon D (2000) New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep. Rev Sci Instrum 71(9):3436–3440CrossRefGoogle Scholar
  13. 13.
    Croft D, Shedd G, Devasia S (2001) Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application. J Dyn Syst Meas Control Trans ASME 123(1):35–43CrossRefGoogle Scholar
  14. 14.
    Leang K, Devasia S (2007) Feedback-linearized inverse feedforward for creep, hysteresis, and vibration compensation in afm piezoactuators. IEEE Trans Control Syst Technol 15(5):927–935CrossRefGoogle Scholar
  15. 15.
    Yi KA, Veillette RJ (2005) A charge controller for linear operation of a piezoelectric stack actuator. IEEE Trans Control Syst Technol 13(4):517–526CrossRefGoogle Scholar
  16. 16.
    Chuang N, Petersen IR, Pota HR (2013) Robust \(H^{\infty }\) control in fast atomic force microscopy. Asian J Control 15(4):1–15MathSciNetGoogle Scholar
  17. 17.
    Cruz-Hernandez JM, Hayward V (2001) Phase control approach to hysteresis reduction. IEEE Trans Control Syst Technol 9(1):17–26CrossRefGoogle Scholar
  18. 18.
    Mahmood IA, Moheimani SOR (2009) Making a commercial atomic force microscope more accurate and faster using positive position feedback control. Rev Sci Instrum 80(6):063 705-063–705-8Google Scholar
  19. 19.
    Moheimani SOR, Vautier BJG (2005) Resonant control of structural vibration using charge-driven piezoelectric actuators. IEEE Trans Control Syst Technol 13(6):1021–1035CrossRefGoogle Scholar
  20. 20.
    Aphale SS, Bhikkaji B, Moheimani SOR (2008) Minimizing scanning errors in piezoelectric stack-actuated nanopositioning platforms. IEEE Trans Nanotechnol 7(1):79–90CrossRefGoogle Scholar
  21. 21.
    Pota HR, Moheimani SOR, Smith M (2002) Resonant controller for smart structures. Smart Mater Struct 11:1–8CrossRefGoogle Scholar
  22. 22.
    Bhikkaji B, Ratnam M, Fleming AJ, Moheimani SOR (2007) High-performance control of piezoelectric tube scanners. IEEE Trans Control Syst Technol 15(5):853–866CrossRefGoogle Scholar
  23. 23.
    Moheimani SOR, Vautier BJG, Bhikkaji B (2006) Experimental implementation of extended multivariable PPF control on an active structure. IEEE Trans Control Syst Technol 14(3):443–455Google Scholar
  24. 24.
    Kenton BJ, Fleming AJ, Leang KK (2011) Compact ultra-fast vertical nanopositioner for improving scanning probe microscope scan speed. Rev Sci Instrum 82(12):123 703-123–703-8Google Scholar
  25. 25.
    Schitter G, Astrom K, DeMartini B, Thurner P, Turner K, Hansma P (2007) Design and modeling of a high-speed AFM-scanner. IEEE Trans Control Syst Technol 15(5):906–915CrossRefGoogle Scholar
  26. 26.
    Kenton B, Leang K (2012) Design and control of a three-axis serial-kinematic high-bandwidth nanopositioner. IEEE/ASME Trans Mechatron 17(2):356–369CrossRefGoogle Scholar
  27. 27.
    Fairbairn MW, Moheimani SOR, Fleming AJ (2011) Improving the scan rate and image quality in tapping mode atomic force microscopy with piezoelectric shunt control. In: Australian control conference (AUCC). pp 26–31Google Scholar
  28. 28.
    Grosswindhager S, Kozek M, Voigt A, Haffner L (2013) Fuzzy predictive control of district heating network. Int J Model Ident Control 19(2):161–170CrossRefGoogle Scholar
  29. 29.
    Su B, Qi G, Van Wyk BJ (2012) Output feedback predictive control for uncertain non-linear switched systems. Int J Model Identif Control 17(3):195–205CrossRefGoogle Scholar
  30. 30.
    Li D, Xi Y (2011) The synthesis of robust model predictive control with QP formulation. Int J Model Identif Control 13(1/2):1–8CrossRefMathSciNetGoogle Scholar
  31. 31.
    Rana MS, Pota HR, Petersen IR (2012) Model predictive control of atomic force microscope for fast image scanning. In: 51st conference on decision and control (CDC). Hawaii, USA, pp 2477–2482Google Scholar
  32. 32.
    Devasia S, Eleftheriou E, Moheimani SOR (2007) A survey of control issues in nanopositioning. IEEE Trans Control Syst Technol 15(5):802–823CrossRefGoogle Scholar
  33. 33.
    Privara S, Cigler J, Vana Z, Ferkl L (2012) Incorporation of system steady state properties into subspace identification algorithm. Int J Model Identif Control 16(2):159–167CrossRefGoogle Scholar
  34. 34.
    Ljung L (2002) Prediction error estimation methods. Circ Syst Signal Process 21:11–21CrossRefMathSciNetGoogle Scholar
  35. 35.
    Kabaila P (1983) On output-error methods for system identification. IEEE Trans Autom Control 28(1):12–23CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Wang L (2009) Model predictive control system design and implementation using MATLAB. Springer, LondonGoogle Scholar
  37. 37.
    Ray P, Panda G (2012) Harmonics estimation using KF-Adaline algorithm and elimination with hybrid active power filter in distorted power system signals. Int J Model Identif Control 16(2):149–158CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Engineering and Information TechnologyThe University of New South WalesCanberraAustralia

Personalised recommendations