Low Intensity Laser Irradiation Influence Proliferation of Mesenchymal Stem Cells: Comparison of Experimental Data to Intelligent Agent-Based Model Predictions

  • Aya Sedky AdlyEmail author
  • Mohamed H. Haggag
  • Mostafa-Sami M. Mostafa
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 452)


Over the past several decades, evidences have shown that low intensity laser can stimulate a number of biological processes, including stem cell proliferation. In order to fully utilize stem cells in research and medical studies, understanding these processes is essential. However, for gaining this fundamental understanding in a rapid and cost-effective manner, model predictions and computer simulations are required as they may yield useful information and represent powerful supportive tools. This chapter provides some of the experiments employed to measure influence of low intensity laser on proliferation of mesenchymal stem cells which can vary considerably according to many parameters and biological conditions such as laser nature of emission, irradiation time, wavelength, and energy density. These experiments were compared to intelligent agent-based model predictions and detailed information about the model description and comparison results are provided. The model was capable of predicting the data for the scenarios fairly well although a few were somewhat problematic. This study recommends a wave length ranging from 600 to 680 nm, and an energy density ranging from 0.3 to 4.0 J/\( \mathrm cm^{2}\) for enhancing proliferation of mesenchymal stem cells.


Mesenchymal stem cells Intelligent agent-based model  Low intensity laser irradiation Proliferation Biological systems 


  1. 1.
    Splinter R (2006) An introduction to biomedical optics. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    Tuner J, Hode L (2002) Laser therapy—clinical practice and scientific background. Prima Books, GrängesbergGoogle Scholar
  3. 3.
    Karu T (2007) Ten lectures on basic science of laser phototherapy. Prima Books, GrangesbergGoogle Scholar
  4. 4.
    Arany PR, Nayak RS, Hallikerimath S, Limaye AM, Kale AD et al (2007) Activation of latent TGF-beta1 by low-power laser in vitro correlates with increased TGF-beta1 levels in laser-enhanced oral wound healing. Wound Repair Regen 15:866–874. doi: 10.1111/j.1524-475x.2007.00306.x
  5. 5.
    Arora H, Pai KM, Maiya A,Vidyasagar MS, Rajeev A (2008) Efficacy of He-Ne laser in the prevention and treatment of radiotherapy-induced oral mucositis in oral cancer patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105:180–186Google Scholar
  6. 6.
    Gal P, Mokry M, Vidinsky B, Kilik R, Depta F et al (2009) Effect of equal daily doses achieved by different power densities of low-level laser therapy at 635 nm on open skin wound healing in normal and corticosteroid-treated rats. Lasers Med Sci 24:539–547. doi: 10.1007/s10103-008-0604-9 CrossRefGoogle Scholar
  7. 7.
    Woodruff L, Bounkeo J, Brannon W, Dawes K, Barham C, Waddell D, Enwemeka C (2004) The efficacy of laser therapy in wound repair: a meta-analysis of the literature. Photomed Laser Surg 22:241–247CrossRefGoogle Scholar
  8. 8.
    Hawkins D, Abrahamse H (2007) Phototherapy - a treatment modality for wound healing and pain relief. Afr J Biomed Res 10:99–109Google Scholar
  9. 9.
    Lam TS, Abergel RP, Meeker CA, Castel JC, Dwyer RM, Uitto J (1986) Laser stimulation of collagen synthesis in human skin fibroblast cultures. Lasers Life Sci 1:61–77Google Scholar
  10. 10.
    Yu W, Naim JO, Lanzafame RJ (1994) The effect of laser irradiation on the release of bFGF from 3T3 fibroblasts. Photochem Photobiol 59(2):70–167Google Scholar
  11. 11.
    Djavid GE, Mehrdad R, Ghasemi M, Hasan-Zadeh H, Sotoodehmanesh A, Pouryaghoub G (2007) In chronic low back pain, low level laser therapy combined with exercise is more beneficial than exercise alone in long term: a randomized trial. Aust J Physiother 53:155–160CrossRefGoogle Scholar
  12. 12.
    Karu T (1998) The science of low power laser therapy. Gordon and Breach Science Publishers, LondonGoogle Scholar
  13. 13.
    Iijima K, Shimoyama N, Shimoyama M, Yamamoto T, Shimizu T et al (1989) Effect of repeated irradiation of low-power He-Ne laser in pain relief from postherpetic neuralgia. Clin J Pain 5:271–274. doi: 10.1097/00002508-198909000-00013. CrossRef PubMed/NCBIGoogle Scholar
  14. 14.
    Kemmotsu O, Sato K, Furomido H, Harada K, Takigawa C, Kaseno S (1991) Efficacy of low reactive-level laser therapy for pain attenuation of postherpetic neuralgia. Laser Ther 3:1–75Google Scholar
  15. 15.
    Qadri T, Bohdanecka P, Tunér J, Miranda L, Altamash M, Gustafsson A (2007) The importance of coherence length in laser phototherapy of gingival inflammation: a pilot study. Lasers Med Sci 22(4):245–251CrossRefGoogle Scholar
  16. 16.
    Martin R (2003) Laser-accelerated inflammation/pain reduction and healing practical. Pain Manag 3:20–25Google Scholar
  17. 17.
    Stergioulas A (2004) Low-level laser treatment can reduce edema in second degree ankle sprains. J Clin Laser Med Surg 22(2):125–128Google Scholar
  18. 18.
    Enwemeka CS, Parker JC, Dowdy DS, Harkness EE, Sanford LE, Woodruff LD (2004) The efficacy of low power lasers in tissue repair and pain control: a meta analysis study. Photomed Laser Surg 22:323–329Google Scholar
  19. 19.
    Zhang L, Xing D, Gao X, Wu S (2009) Low-power laser irradiation promotes cell proliferation by activating PI3K/Akt pathway. J Cell Physiol 219:553–562CrossRefGoogle Scholar
  20. 20.
    Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low-power laser irradiation. J Biomed Sci 16:4CrossRefGoogle Scholar
  21. 21.
    Hu WP, Wang JJ, Yu CL, Lan CCE, Chen GS, Yu HS (2007) Helium-Neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Inv Dermatol 127:2048–2057CrossRefGoogle Scholar
  22. 22.
    Moore P, Ridgway TD, Higbee RG, Howard EW, Lucroy MD (2005) Effect of wavelength on low-intensity laser irradiationstimulated cell proliferation in vitro. Lasers Surg Med 36:8–12CrossRefGoogle Scholar
  23. 23.
    Fujihara NA, Hiraki KRN, Marque MM (2006) Irradiation at 780 nm increases proliferation rate of osteoblasts independently of dexamethasone presence. Lasers Surg Med 38:332–336CrossRefGoogle Scholar
  24. 24.
    Taniguchi D, Dai P, Hojo T, Yamaoka Y, Kubo T, Takamatsu T (2009) Low-energy laser irradiation promotes synovial fibroblast proliferation by modulating p15 subcellular localization. Lasers Surg Med 41(3):232–239CrossRefGoogle Scholar
  25. 25.
    Hou JF, Zhang H, Yuan X et al (2008) In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med 40(10):726–733CrossRefGoogle Scholar
  26. 26.
    Horvát-Karajz K, Kovács V, Balogh Z, Sréter L, Uher F (2009) In vitro effect of carboplatin, cytarabine, paclitaxel, vincistine and low power laser irradiation on murine mesenchymal stem cells. Onkologie 32/4:216–217, Lasers Surg Med 41:463–469Google Scholar
  27. 27.
    Leonida A, Paiusco A, Rossi G et al (2013) Effects of low-level laser irradiation on proliferation and osteoblastic differentiation of human mesenchymal stem cells seeded on a three-dimensional biomatrix: in vitro pilot study. Lasers Med Sci 28(1):125–132CrossRefGoogle Scholar
  28. 28.
    Hana Tuby, Maltz Lidya, Oron Uri (2007) Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers Surg Med 39:373–378CrossRefGoogle Scholar
  29. 29.
    Stein E, Koehn J, Sutter W, Wendtlandt G, Wanschitz F et al (2008) Initial effects of low-level laser therapy on growth and differentiation of human osteoblast-like cells. Wien Klin Wochenschr 120:112–117. doi: 10.1007/s00508-008-0932-6 CrossRefGoogle Scholar
  30. 30.
    Hawkins DH, Abrahamse H (2006) The role of laser fluence in cell viability, proliferation, and membrane integrity of wounded human skin fibroblasts following helium-neon laser irradiation. Lasers Surg Med 38:74–83CrossRefGoogle Scholar
  31. 31.
    Arisu HD, Turkoz E, Bala O (2006) Effects of Nd:Yag laser irradiation on osteoblast cell cultures. Lasers Med Sci 21:175–180. doi: 10.1007/s10103-006-0398-6 CrossRefGoogle Scholar
  32. 32.
    Soares CP, Oliveira DAAP, de Oliveira RF, Zangaro RA (2008) Evaluation of low-level laser therapy of osteoblastic cells. Photomed Laser Surg 26:401–404. doi: 10.1089/pho.2007.2101 Google Scholar
  33. 33.
    Siniscalco D, Giordano A, Galderisi U (2012) Novel insights in basic and applied stem cell therapy. J Cell Physiol 227:2283–2286CrossRefGoogle Scholar
  34. 34.
    Regenerative medicine glossary (2009) Regener Med 4(4 Suppl):S1–88. doi: 10.2217/rme.09.s1. PMID 19604041
  35. 35.
    Mason C, Dunnill P (2008) A brief definition of regenerative medicine. Regener Med 3(1):1–5. doi: 10.2217/17460751.3.1.1. PMID 18154457Google Scholar
  36. 36.
    Riazi AM, Kwon SY, Stanford WL (2009) Stem cell sources for regenerative medicine. Methods Mol Biol 482:55–90. doi: 10.1007/978-1-59745-060-7_5. PMID 19089350Google Scholar
  37. 37.
    Lysaght MJ, Crager J (2009) Origins. Tissue Eng Part A 15(7):50–1449. doi: 10.1089/ten.tea.2007.0412. PMID 19327019
  38. 38.
    Placzek MR, Chung IM, Macedo HM et al (2009) Stem cell bioprocessing: fundamentals and principles. J R Soc Interface 6(32):32–209. doi: 10.1098/rsif.2008.0442. PMC 2659585. PMID 19033137Google Scholar
  39. 39.
    Waterman R, Betancourt A (2011) Outside the operating room: unlimited directions in research and beyond. Ochsner J (Spring) 11(1):14–16. PMCID: PMC3096162Google Scholar
  40. 40.
    Lodi D, Iannitti T, Palmieri B (2011) Stem cells in clinical practice: applications and warnings. J Exp Clin Cancer Res 30:9. doi: 10.1186/1756-9966-30-9 CrossRefGoogle Scholar
  41. 41.
    Adly AS, Aboutabl AE, Ibrahim MS (2011) Modeling of gene therapy for regenerative cells using intelligent agents. Adv Exp Med Biol 696:317–25. doi: 10.1007/978-1-4419-7046-6_32, PMID 21431572
  42. 42.
    Adly AS, Kandil OA, Ibrahim MS et al (2010) Computational and theoretical concepts for regulating stem cells using viral and physical methods. Mach Learn Syst Eng 68:533–546. doi: 10.1007/978-90-481-9419-3_41
  43. 43.
    Qu Z, MacLellan WR, Weiss JN (2003) Dynamics of the cell cycle: checkpoints, sizers and timers. Biophys J 85(6):3600–3611Google Scholar
  44. 44.
    Burdon T, Smith A, Savatier P (2002) Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol 12(9):432–438Google Scholar
  45. 45.
    Watt FM, Hogan BLM (2000) Out of Eden: stem cells and their niches. Science 287(5457):1427Google Scholar
  46. 46.
    Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116:769–778CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Aya Sedky Adly
    • 1
    Email author
  • Mohamed H. Haggag
    • 1
  • Mostafa-Sami M. Mostafa
    • 1
  1. 1.Department of Computer ScienceHelwan UniversityHelwanEgypt

Personalised recommendations