Application of Microbial Fuel Cells to Power Sensor Networks for Ecological Monitoring

  • Chris Knight
  • Kate Cavanagh
  • Christopher Munnings
  • Tim Moore
  • Ka Yu Cheng
  • Anna H. Kaksonen
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 3)

Abstract

The reliability of wireless computing and in particular nodal networks of wireless sensors has seen increased application of these systems for ecological monitoring. The increase in reliability and decrease of cost enable the establishment of large nodal networks. Each of these nodes require a power source and although batteries are an energy dense solution, if a nodal network is to run for a reasonable length of time, replacement of these batteries becomes time consuming. One solution is energy harvesting, where ambient local energy is used to run the network and charge a secondary cell for use when the ambient energy is unavailable. Microbial fuel cells (MFCs) have quite a long history but only recently have they been considered as a viable source of energy for a practical use. This chapter describes some simple MFC devices and determines their practicality for powering large scale sensor networks. The discussion includes basic design elements, power density, prototyping methods and power output determination. Overall, this chapter reveals that present MFC technologies suffer from very low specific power output, short life time and low efficiencies. These factors make current devices of little practical use, however, there has been a dramatic increase in funding and research into MFC’s leading to a greater understanding of the fundamental science behind their operation. This is driving significant improvements in both the reliability and efficiency of these systems. This, along with a rapid decrease in power requirements of wireless sensor nodes, marks MFC as a promising technology for the powering of wireless sensor networks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wark, T., Hu, W., Corke, P., Hodge, J., Keto, A., Mackey, B., Foley, G., Sikka, P., Runig, M.: Springbrook: Challenges in Developing a Long-Term, Rainforest Wireless Sensor Network, pp. 599–604. IEEE (2008)Google Scholar
  2. 2.
    Lajara, R., Alberola, J., Pelegrí-Sebastiá, J.: A solar energy powered autonomous wireless actuator node for irrigation systems. Sensors 11(1), 329–340 (2011)CrossRefGoogle Scholar
  3. 3.
    McGarry, S., Knight, C.: The potential for harvesting energy from the movement of trees. Sensors 11(10), 9275–9299 (2011)CrossRefGoogle Scholar
  4. 4.
    Kruijt, B., Malhi, Y., Lloyd, J., Nobre, A.D., Miranda, A.C., Pereira, M.G.P., Culf, A., Grace, J.: Turbulence statistics above and within two amazon rain forest canopies. Boundary-Layer Meteorology 94, 297–331 (2000)CrossRefGoogle Scholar
  5. 5.
    Knight, C., Davidson, J., Behrens, S.: Energy Options for Wireless Sensor Nodes. Sensors 8(12), 8037–8066 (2008)CrossRefGoogle Scholar
  6. 6.
    Pearcy, R.W.: The light environment and growth of C3 and C4 tree species in the understory of a Hawaiian forest. Oecologia 58(1), 19–25 (1983)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bossel, U.: The birth of the fuel cell, pp. 1835–1845 (2000)Google Scholar
  8. 8.
    Hammerschmidt, A.E.: Fuel Cell Propulsion of Submarines. In: Advanced Naval Propulsion Symposium, Arlington, VA, USA, vol. 120, pp. 1–7 (October 2006)Google Scholar
  9. 9.
    Plug Power, Plug Power products (2011), http://www.plugpower.com/Solutions/Products.aspx
  10. 10.
    Aki, H.: The Penetration of Micro CHP in Residential Dwellings in Japan. In: 2007 IEEE Power Engineering Society General Meeting, pp. 1–4 (June 2007)Google Scholar
  11. 11.
    Baxi, Baxi Range Guide innotech gamma 1.0 (2011), http://www.baxi.co.uk/docs/Baxi_Range_Guide.pdf
  12. 12.
    Ceramic Fuel Cells Limited, Ceramic Fuel Cells product page, Ceramic Fuels Cells webpage (2012), http://www.cfcl.com.au/products/
  13. 13.
    Bloomenergy, “Bloomenergy,” Bloomenergy webpage (2012), http://www.bloomenergy.com/
  14. 14.
    Fuel Cell Today, The Fuel Cell Industry Review 2012 (2012) Google Scholar
  15. 15.
    Horizon Fuel Cell Technologies, Portable power (2012), http://www.horizonfuelcell.com/
  16. 16.
    Potter, M.C.: Electrical effects accompanying the decomposition of organic compounds. Proc. Roy. Soc. London, Series B 84, 260–276 (1911)CrossRefGoogle Scholar
  17. 17.
    Regan, J., Logan, B.: Microbial fuel cells: challenges and applications. Environ. Sci. Technol. 40(18), 5172–5180Google Scholar
  18. 18.
    Lowy, D.A., Tender, L.M., Zeikus, J.G., Park, D.H., Lovley, D.R.: Harvesting energy from the marine sediment-water interface II: kinetic activity of anode materials. Biosensors Bioelectronics 21, 2058–2063 (2006)CrossRefGoogle Scholar
  19. 19.
    Giddey, S., Badwal, S.P.S., Kulkarni, A., Munnings, C.: A Comprehensive Review of Direct Carbon Fuel Cell Technology. Progress in Energy and Combustion Science 38, 360–399 (2012)CrossRefGoogle Scholar
  20. 20.
    Lux, K.W., Rodriguez, K.J.: Template synthesis of arrays of nano fuel cells. Nano letters 6(2), 288–295 (2006)CrossRefGoogle Scholar
  21. 21.
    Badwal, S.P.S., Fini, D., Giddey, S.: A novel design of bipolar interconnect plate for self-air breathing micro fuel cells and degradation issues. International Journal of Hydrogen Energy 37, 11431–11447 (2012)CrossRefGoogle Scholar
  22. 22.
    Sundarrajan, S., Allakhverdiev, S.I., Ramakrishna, S.: Progress and perspectives in micro direct methanol fuel cell. International Journal of Hydrogen Energy 37(10), 8765–8786 (2011)CrossRefGoogle Scholar
  23. 23.
    Toshiba: Toshiba launches direct methanol fuel cell in Japan as external power for mobile electronic devices (2009), http://www.toshiba.com/taec/news/press_releases/2009/dmfc_09_580.jsp
  24. 24.
    Oy Hydrocell Ltd., “Hydrocell”, http://www.hydrocell.fi/en/
  25. 25.
    Chaudhuri, S.K., Lovley, D.R.: Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology 21(10), 1229–1232 (2003)CrossRefGoogle Scholar
  26. 26.
    Fujiwara, N., Siroma, Z., Yamazaki, S., Ioroi, T., Senoh, H., Yasuda, K.: Direct ethanol fuel cells using an anion exchange membrane. Journal of Power Sources 185(2), 621–626 (2008)CrossRefGoogle Scholar
  27. 27.
    Post, J.W., Veerman, J., Hamelers, H.V.M., Euverink, G.J.W., Metz, S.J., Nymeijer, K., Buisman, C.J.N.: Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis. Journal of Membrane Science 288(1-2), 218–230 (2007)CrossRefGoogle Scholar
  28. 28.
    Ma, J., Choudhury, N.A., Sahai, Y.: A comprehensive review of direct borohydride fuel cells. Renewable and Sustainable Energy Reviews 14(1), 183–199 (2010)CrossRefGoogle Scholar
  29. 29.
    MacVittie, K., Halamek, J., Halamkova, L., Southcott, M., Jemison, W.D., Lobel, R., Katz, E.: From ‘Cyborg’ Lobsters to a Pacemaker Powered by Implantable Biofuel Cells. Energy & Environmental Science, 1–19 (2010)Google Scholar
  30. 30.
    Du, Z., Li, H., Gu, T.: A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances 25(5), 464–482 (2007)CrossRefGoogle Scholar
  31. 31.
    Logan, B.E., Elimelech, M.: Membrane-based processes for sustainable power generation using water. Nature 488(7411), 313–319 (2012)CrossRefGoogle Scholar
  32. 32.
    Rabaey, K., Angenent, L., Schroder, U. Keller, J.: Bioelectrochemical Systems, From Extracellular Electron Transfer to Biotechnological ApplicationGoogle Scholar
  33. 33.
    Chang, I., An, J., Kim, D., Chun, Y., Lee, S.J., Ng, H.Y.: Floating-type microbial fuel cell (FT-MFC) for treating organic-contaminated water. Environmental Science and Technology 43(5), 1642–1647 (2009)CrossRefGoogle Scholar
  34. 34.
    An, J., Moon, H., Chang, I.: Multiphase electrode microbial fuel cell system that simultaneously converts organics coexisting in water and sediment phases into electricity. Environmental Science and Technology 44(18), 7145–7150 (2010)CrossRefGoogle Scholar
  35. 35.
    Figueroa, I., Girguis, P.R., Nielsen, M.E.: Harnessing energy from marine productivity using bioelectrochemical systems. Current Opinion in Biotechnology 21(3), 252–258Google Scholar
  36. 36.
    Chung, T., Hong, S.W., Kim, H.S.: Alteration of sediment organic matter in sediment microbial fuel cells. Environmental Pollution 158(1), 185–191Google Scholar
  37. 37.
    Wang, W., Reimers, C.E., Tender, L.M., Fertig, S.: Harvesting energy from the marine sediment-water interface. Environ. Sci. Technol. 35, 192–195 (2001)MATHCrossRefGoogle Scholar
  38. 38.
    Franks, A.E., Nevin, K.P.: Microbial Fuel Cells, A Current Review. Energies 3(5), 899–919 (2010)CrossRefGoogle Scholar
  39. 39.
    Ringeisen, B., Biffinger, J.C., Pietron, J., Ray, R., Little, B.: A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosensors Bioelectronics 22, 1672–1679 (2007)CrossRefGoogle Scholar
  40. 40.
    Lovley, D., Bond, D.R.: Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69(3), 1548–1555 (2003)CrossRefGoogle Scholar
  41. 41.
    Bergel, A., Dumas, C., Basseguy, R.: Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes. Electrochim. Acta 53, 5235–5241Google Scholar
  42. 42.
    Lovley, D., Inoue, K., Qian, X., Morgado, L., Kim, B.C., Mester, T., Izallalen, M., Salgueiro, C.A.: Purification and characterization of OmcZ, an outer-surface, octaheme c-type cytochrome essential for optimal current production by geobacter sulfurreducens. Applied and Environmental Microbiology 76(12), 3999–4007Google Scholar
  43. 43.
    Lovley, D., Inoue, K., Leang, C., Franks, A.E., Woodard, T.L., Nevin, K.P.: Specific localization of the c-type cytochrome OmcZ at the anode surface in current-producing biofilms of Geobacter sulfurreducens. Environmental Microbiology Reports 3(2), 211–217Google Scholar
  44. 44.
    Kim, H., Park, H., Hyun, M., Chang, I.: A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microbial Technol. 30, 145–152Google Scholar
  45. 45.
    Bond, D., Marsili, E., Baron, D.B., Shikhare, I.D., Coursolle, D., Gralnick, J.A.: Shewanella secretes flavins that mediate extracellular electron transfer. PNAS 105(10), 3968–3973 (2008)CrossRefGoogle Scholar
  46. 46.
    Lovley, D., Reguera, G., Nevin, K.P., Nicoll, J.S., Covalla, S.F., Woodard, T.L.: Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol. 72, 7345–7348 (2006)CrossRefGoogle Scholar
  47. 47.
    Jones-Meehan, J.M., Ringeisen, B.R., Henderson, E., Wu, P.K., Little, B.A., Biffinger, J.C.: High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ. Sci. Technol. 40, 2629–2634 (2006)CrossRefGoogle Scholar
  48. 48.
    Angenent, L., Rosenbaum, M.A., Bar, H.Y., Beg, Q.K., Segrè, D., Booth, J., Cotta, M.A.: Shewanella oneidensis in a lactate-fed pure-culture and a glucose-fed co-culture with Lactococcus lactis with an electrode as electron acceptor. Bioresource Technology 102(3), 2623–2628 (2011)CrossRefGoogle Scholar
  49. 49.
    Logan, B., Watson, V.J.: Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures. Biotechnology and Bioengineering 105(3), 489–498 (2010)CrossRefGoogle Scholar
  50. 50.
    Lovley, D., Yi, H., Nevin, K.P., Kim, B.C., Franks, A.E., Klimes, A., Tender, L.M.: Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosensors and Bioelectronics 24(12), 3498–3503 (2009)CrossRefGoogle Scholar
  51. 51.
    Kaur, A., Kim, J.R., Dinsdale, R.M., Guwy, A.J., Premier, G.C.: Microbial fuel cell type biosensors for volatile fatty acid with an acclimated bacterial community. Communications in Agricultural and Applied Biological Sciences 77(2), 28 (2010)Google Scholar
  52. 52.
    Pocaznoi, D., Calmet, A., Etcheverry, L., Erable, B., Bergel, A.: Stainless steel is a promising electrode material for anodes of microbial fuel cells. Energy & Environmental Science 5(11), 9645 (2012)CrossRefGoogle Scholar
  53. 53.
    Knight, C., Chris, Cavanagh, K.: Soil microbial fuel cells using inexpensive and non-exotic materials to successfully power sensor nodes. Communications in Agricultural and Applied Biological Sciences 77(2), 93 (2012)Google Scholar
  54. 54.
    He, Z., Shao, H., Angenent, L.T.: Increased power production from a sediment microbial fuel cell with a rotating cathode. Biosensors & Bioelectronics 22(12), 3252–3255 (2007)CrossRefGoogle Scholar
  55. 55.
    Strik, D.P.B.T.B., Bert, H.V.M.H., Snel, J.F.H., Buisman, C.J.N.: Short Communication Green electricity production with living plants and bacteria in a fuel cell, pp. 870–876 (2008)Google Scholar
  56. 56.
    Angenent, L., He, Z., Shao, H.: Increased power production from a sediment microbial fuel cell with a rotating cathode. Biosensors Bioelectronics 22, 3252–2355Google Scholar
  57. 57.
    Bass, R., Etcheverry, L., Bergel, A.: Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials, pp. 2–7 (2007) Google Scholar
  58. 58.
    Gong, Y., Radachowsky, S.E., Wolf, M., Nielsen, M.E., Girguis, P.R., Reimers, C.E.: Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen/temperature sensor system. Environmental Science & Technology 45(11), 5047–5053 (2011)CrossRefGoogle Scholar
  59. 59.
    Rabaey, K., Logan, B.E., Hamelers, B., Rozendal, R.A., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W.: Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40(17), 5181–5192 (2006)CrossRefGoogle Scholar
  60. 60.
    Cheng, K., Ho, G., Cord-Ruwisch, R.: Affinity of microbial fuel cell biofilm for the anodic potential. Environ. Sci. Technol. 42(10), 3828–3834 (2008)CrossRefGoogle Scholar
  61. 61.
    Clarke, R.E., Giddey, S., Ciacchi, F.T., Badwal, S.P.S., Paul, B., Andrews, J.: Direct coupling of an electrolyser to a solar PV system for generating hydrogen. International Journal of Hydrogen Energy 34(6), 2531–2542 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chris Knight
    • 1
  • Kate Cavanagh
    • 1
  • Christopher Munnings
    • 2
  • Tim Moore
    • 1
  • Ka Yu Cheng
    • 3
  • Anna H. Kaksonen
    • 3
  1. 1.CSIRO Energy TechnologyMayfield WestAustralia
  2. 2.CSIRO Energy TechnologyClaytonAustralia
  3. 3.CSIRO Land and WaterFloreatAustralia

Personalised recommendations