Skip to main content

Quasi Ellipse Method Enabling High Accuracy Phase Reconstruction with Random Phase Steps in Fizeau-Interferometers

  • Conference paper
  • 2200 Accesses

Abstract

Phase reconstruction from intensity measurements in interferometry is classically solved by phase-shifting or phase-stepping techniques. At each pixel a sequence (set) of intensity measurements is taken, and between those measurements the bias phase is changed in a most precise manner (i.e. "phase-stepping"). High accuracy of the computed phases in each pixel is achieved by knowing the individual intensities but especially also the global bias-phase of every interferogram in the set. The obvious problem, that the bias-phase is a delicate quantity, highly error prone due to vibrations, air-turbulence and wavelength-instability of the laser has conventionally been tried to address by special phase-shifting formulas [1-6]. These enable correct phase reconstruction even with linear or quadratic phase-stepping errors as well as with non-linearity of the characteristic detector curve and also mitigate the effect of multiple reflections within the Fizeau-cavity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kuchel, M.: Method and apparatus for phase evaluation of pattern images used in optical measurement. US patent 5,361,312 (1994)

    Google Scholar 

  2. De Groot, P.: Phase shifting interferometer and method for surface topography measurement. US patent 5,473,434 (1995)

    Google Scholar 

  3. Surrel, Y.: Design of algorithms for phase measurements by the use of phase stepping. Appl. Opt. 35, 51–60 (1996)

    Article  Google Scholar 

  4. Küchel, M.: Some Progress in Phase Measurement Techniques. In: Jüptner, W., Osten, W. (eds.) Fringe 1997, Automatic Processing of Fringe Patterns, pp. 27–44. Akademie Verlag (1997)

    Google Scholar 

  5. Hibino, K., Oreb, B., Farrant, D., Larkin, K.: Phase-shifting algorithms for nonlinear and spatially nonuniform phase shifts. J. Opt. Soc. Am. 14, 918–930 (1997)

    Article  Google Scholar 

  6. Zhu, Y., Gemma, T.: Method for designing error-compensating phase-calculation algorithms for phase-shifting interferometry. Appl. Opt. 40, 4540–4546 (2001)

    Article  Google Scholar 

  7. Rathjen, C.: Statistical properties of phase-shift algorithms. J. Opt. Soc. Am. A 12, 1997–2008 (1995)

    Article  Google Scholar 

  8. Hibino, K.: Susceptibility of systematic error-compensating algorithms to random noise in phase-shifting interferometry. Appl. Opt. 36, 2084–2093 erratum 5362 (1997)

    Google Scholar 

  9. Koliopoulos, C.: Simultaneous phase-shift interferometer. In: Proc. SPIE, vol. 1531, pp. 119–127 (1992)

    Google Scholar 

  10. Novak, M., Millerd, J., Brock, N., North-Morris, M., Hayes, J., Wyant, J.: Analysis of a micro-polarizer array based simultaneous phase-shifting interferometer. Appl. Opt. 44, 6861–6868 (2005)

    Article  Google Scholar 

  11. Takeda, M., Hideki, I., Kobayashi, S.: Fourier-transform method of fringe-pattern analysis for computer based topography and interferometry. J. Opt. Soc. Am. 72, 156–160 (1982)

    Article  Google Scholar 

  12. Kuechel, M.: The new Zeiss interferometer. In: Proc. SPIE, vol. 1332, pp. 655–663 (1990)

    Google Scholar 

  13. Sykora, D., Holmes, M.: Dynamic measurements using a Fizeau interferometer. In: Proc. SPIE 8082, article id. 80821R (2011)

    Google Scholar 

  14. Freischlad, K., Küchel, M., Schuster, K.-H., Wegmann, U., Kaiser, W.: Real-time wavefront measurement with lambda/10 fringe spacing for the optical shop. In: Proc. SPIE, vol. 1332, pp. 18–24 (1990)

    Google Scholar 

  15. Sykora, D., Kuechel, M.: In situ calibration of interferometers. Patent application US 20130063730 A1 (2013)

    Google Scholar 

  16. Lai, G., Yatagai, T.: Generalized phase-shifting interferometry. J. Opt. Soc. Am. A 8, 822–827 (1991)

    Article  Google Scholar 

  17. Broistedt, H., Dolca, N., Strube, S., Tutsch, R.: Random-phase-shift Fizeau interferometer. Appl. Opt. 50, 6564–6575 (2011)

    Article  Google Scholar 

  18. Küchel, M., Hof, A.: Method for analyzing periodic brightness patterns. US patent, 5,343,294 (1994)

    Google Scholar 

  19. Küchel, M., Wiedmann, W.: In-process metrology for large astronomical mirrors. In: Proc. SPIE, vol. 1333, pp. 280–294 (1990)

    Google Scholar 

  20. Farrell, C.T., Player, M.A.: Phase step measurement and variable step algorithms in phase-shifting interferometry. Meas. Sci. Techol. 3, 953–958 (1992)

    Article  Google Scholar 

  21. Farrell, C.T., Player, M.A.: Phase-step insensitive algorithms for phase-shifting interferometry. Meas. Sci. Technol. 5, 648–652 (1994)

    Article  Google Scholar 

  22. Han, G.-S., Kim, S.-W.: Numerical correction of reference phases in phase-shifting interferometry by iterative least-squares fitting. Appl. Opt. 33, 7321–7325 (1994)

    Article  Google Scholar 

  23. Gao, P., Yao, B., Lindlein, N., Mantel, K., Harder, I., Geist, E.: Phase-shift extraction for generalized phase-shifting interferometry. Opt. Lett. 34, 3553–3555 (2009)

    Article  Google Scholar 

  24. Xu, J., Xu, Q., Chai, L.: Iterative algorithm for phase extraction from interferograms with random and spatially nonuniform phase shifts. Appl. Opt. 47, 480–485 (2008)

    Article  Google Scholar 

  25. Xu, J., Xu, Q., Chai, L., Wang, H.: Direct phase extraction from interferograms with random phase shifts. Opt. Exp. 18, 20620–20627 (2010)

    Article  Google Scholar 

  26. Schmit, J., Munteanu, F.: Limitations of iterative least squares methods in phase shifting interferometry in the presence of vibrations. In: Proc. SPIE, vol. 5965 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Küchel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Küchel, M.F. (2014). Quasi Ellipse Method Enabling High Accuracy Phase Reconstruction with Random Phase Steps in Fizeau-Interferometers. In: Osten, W. (eds) Fringe 2013. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36359-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36359-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36358-0

  • Online ISBN: 978-3-642-36359-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics