Advertisement

Fringe 2013 pp 785-790 | Cite as

Revelations in the Art of Fringe Counting: The State of the Art in Distance Measuring Interferometry

  • Peter J. de Groot
  • Vivek G. Badami

Fringes for Distance Measurement

The ancestral roots of the Fringe conference are in the automatic processing of fringe patterns. When we think of patterns, an image comes to mind of flowing lines beautifully wrapped around surface contours. But automatic processing of fringes is not limited to this kind of pattern: The fringes may be laid out along a line of sight as the time history of an object displacement, captured by a detector and processed to tell us something about how the object has moved, or more generally, where the object is with respect to a reference point in space.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Badami, V., de Groot, P.: Displacement measuring interferometry. In: Harding, K.G. (ed.) Handbook of Optical Dimensional Metrology, pp. 157–238. Taylor & Francis, Boca Raton (2013)CrossRefGoogle Scholar
  2. 2.
    Zanoni, C.: Differential interferometer arrangements for distance and angle measurements: Principles, advantages and applications. VDI-Berichte 749, 93–106 (1989)Google Scholar
  3. 3.
    Sommargren, G.E., Schaham, M.: Heterodyne interferometer system. Patent US 4,688,940 (1987)Google Scholar
  4. 4.
    Steinmetz, C.R.: Displacement measurement repeatability in tens of nanometers with laser interferometry. In: SPIE Proceedings, vol. 921, pp. 406–420 (1988)Google Scholar
  5. 5.
    Sommargren, G.E.: Linear/angular displacement interferometer for wafer stage metrology. In: Optical/Laser Microfithography II, vol. 1088, pp. 268–272 (1989)Google Scholar
  6. 6.
    Evans, C., et al.: Metrology and calibration of a long travel stage. CIRP Annals - Manufacturing Technology 54, 495–498 (2005)CrossRefGoogle Scholar
  7. 7.
    Sommargren, G.E.: Apparatus for the measurement of the refractive index of a gas. Patent US 4,733,967 (1988)Google Scholar
  8. 8.
    Demarest, F.C.: High-resolution, high-speed, low data age uncertainty, heterodyne displacement measuring interferometer electronics. Measurement Science and Technology 9, 1024–1030 (1998)CrossRefGoogle Scholar
  9. 9.
    Hill, H.A.: Apparatus and methods for reducing non-cyclic non-linear errors in interferometry. Patent US 7,528,962 (2009)Google Scholar
  10. 10.
    de Groot, P.: Jones matrix analysis of high-precision displacement measuring interferometers. In: Proc. 2nd Topical Meeting on Optoelectronic Distance Measurement and Applications (ODIMAP II), pp. 9–14 (1999)Google Scholar
  11. 11.
    Hill, H.A.: Systems and methods for quantifying nonlinearities in interferometry systems. Patent US 6,252,668 (2001)Google Scholar
  12. 12.
    Holmes, M.L., Evans, C.J.: Displacement measuring interferometry measurement uncertainty. In: ASPE Topical Meeting on Uncertainty Analysis in Measurement and Design, vol. 33, pp. 89–94 (2004)Google Scholar
  13. 13.
    Mielke, S.L., Demarest, F.C.: Displacement measurement interferometer error correction techniques. In: Proc. of the ASPE Topical Meeting on Precision Mechanical Design and Mechatronics for Sub-50nm Semiconductor Equipment, vol. 43, pp. 113–116 (2008)Google Scholar
  14. 14.
    Deck, L.L., et al.: Interferometric encoder systems. US Patent 8,300,233 (2012)Google Scholar
  15. 15.
    de Groot, P., Schroeder, M.: Interferometric heterodyne optical encoder system. US Patent 2012/0194824 A1 (2012)Google Scholar
  16. 16.
    Kimura, A., et al.: Design and construction of a two-degree-of-freedom linear encoder for nanometric measurement of stage position and straightness. Precision Engineering 34, 145–155 (2010)CrossRefGoogle Scholar
  17. 17.
    Heilmann, R.K., et al.: Dimensional metrology for nanometre-scale science and engineering: Towards sub-nanometre accurate encoders. Nanotechnology 15, S504–S511 (2004)Google Scholar
  18. 18.
    de Groot, P., Liesener, J.: Double pass interferometric encoder system. US Patent 2013/0114061 (2013)Google Scholar
  19. 19.
    Deck, L.L.: High-performance multi-channel fiber-based absolute distance measuring interferometer system. In: Instrumentation, Metrology, and Standards for Nanomanufacturing III, vol. 7405, pp. 74050E-1–74050E-9 (2009)Google Scholar
  20. 20.
    de Groot, P., et al.: Interferometer system for monitoring an object. US Patent 7,826,064 (2010)Google Scholar
  21. 21.
    Lewis, A.J.: Absolute length measurement using multiple-wavelength phase-stepping interferometry. Ph.D. Thesis, Department of Physics, Applied Optics Group, University of London (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Zygo CorporationMiddlefieldUSA

Personalised recommendations