Fringe 2013 pp 663-670 | Cite as

Performance Limits for Computational Photography

  • Kaushik Mitra
  • Oliver Cossairt
  • Ashok Veeraraghavan

Introduction

Over the last decade, a number of Computational Imaging (CI) systems have been proposed for tasks such as motion deblurring, defocus deblurring and multispectral imaging. These techniques increase the amount of light reaching the sensor via multiplexing and then undo the deleterious effects of multiplexing by appropriate reconstruction algorithms. However, a detailed analysis of CI has proven to be a challenging problem because performance depends equally on three components: (1) the optical multiplexing, (2) the noise characteristics of the sensor, and (3) the reconstruction algorithm, which typically uses signal priors. In this paper, we utilize a recently proposed framework incorporating all three components [13]. We model signal priors using a Gaussian Mixture Model (GMM), which allows us to analytically compute Minimum Mean-Squared Error (MMSE). We analyze the specific problem of motion and defocus deblurring, showing how to find the optimal exposure time and aperture setting for defocus and motion deblurring cameras, respectively. This framework gives us the machinery to answer an open question in computational imaging: “To deblur or denoise?”

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, Raskar, R.: Optimal single image capture for motion deblurring. In: CVPR (2009)Google Scholar
  2. 2.
    Chatterjee, P., Milanfar, P.: Is denoising dead? IEEE Transactions on Image Processing 19(4), 895–911 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cossairt, O., Gupta, M., Nayar, S.K.: When does computational imaging improve performance? IEEE Transactions on Image Processing 22(1-2), 447–458 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. TIP 16(8) (2007)Google Scholar
  5. 5.
    Dowski Jr., E., Cathey, W.: Extended depth of field through wave- front coding. Applied Optics 34(11), 1859–1866 (1995)CrossRefGoogle Scholar
  6. 6.
    Hasinoff, S., Kutulakos, K., Durand, F., Freeman, W.: Time- constrained photography. In: ICCV, pp. 1–8 (2009)Google Scholar
  7. 7.
    Harwit, M., Sloane, N.: Hadamard transform optics. Academic Press, New York (1979)MATHGoogle Scholar
  8. 8.
    Kuthirummal, S., Nagahara, H., Zhou, C., Nayar, S.K.: Flexible Depth of Field Photography. In: PAMI (2010)Google Scholar
  9. 9.
    Levin, A., Fergus, R., Durand, F., Freeman, W.: Image and depth from a conventional camera with a coded aperture. In: SIGGRAPH. ACM (2007)Google Scholar
  10. 10.
    Levin, A., Nadler, B., Durand, F., Freeman, W.T.: Patch complexity, finite pixel correlations and optimal denoising. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 73–86. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Levin, A., Sand, P., Cho, T., Durand, F., Freeman, W.: Motion-invariant photography. In: SIGGRAPH (2008); Liang, C., Lin, T., Wong, B., Liu, C., Chen, H.: Programmable aperture photography: multiplexed light field acquisition. In: SIGGRAPH (2008)Google Scholar
  12. 12.
    Mitra, K., Veeraraghavan, A.: Light field denoising, light field superresolution and stereo camera based refocusing using a gmm light field patch prior. In: CVPR Workshops (2012)Google Scholar
  13. 13.
    Mitra, K., Veeraraghavan, A., Cossairt, O.: Performance Analysis of Computational Imaging Systems and its Practical Implications. Submitted to PAMI (May 2013)Google Scholar
  14. 14.
    Raskar, R., Agrawal, A., Tumblin, J.: Coded exposure photography: motion deblurring using fluttered shutter. In: SIGGRAPH (2006)Google Scholar
  15. 15.
    Ratner, N., Schechner, Y.: Illumination multiplexing within fundamental limits. In: CVPR (2007)Google Scholar
  16. 16.
    Wagadarikar, A., John, R., Willett, R., Brady, D.: Single disperser design for coded aperture snapshot spectral imaging. Applied Optics 47(10), B44–B51 (2008)Google Scholar
  17. 17.
    Zhang, L., Deshpande, A., Chen, X.: Denoising versus Deblurring: HDR techniques using moving cameras. In: CVPR (2010)Google Scholar
  18. 18.
    Zhou, C., Nayar, S.: What are Good Apertures for Defocus Deblurring. In: ICCP (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kaushik Mitra
    • 2
  • Oliver Cossairt
    • 1
  • Ashok Veeraraghavan
    • 2
  1. 1.Northwestern UniversityEvanstonUSA
  2. 2.Rice UniversityHoustonUSA

Personalised recommendations