Advertisement

Group Signatures with Message-Dependent Opening

  • Yusuke Sakai
  • Keita Emura
  • Goichiro Hanaoka
  • Yutaka Kawai
  • Takahiro Matsuda
  • Kazumasa Omote
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7708)

Abstract

This paper introduces a new capability of the group signature, called message-dependent opening. It is intended to weaken the higher trust put on an opener, that is, no anonymity against an opener is provided by ordinary group signature. In a group signature system with message-dependent opening (GS-MDO), in addition to the opener, we set up the admitter which is not able to open any user’s identity but admits the opener to open signatures by specifying messages whose signatures should be opened. For any signature whose corresponding message is not specified by the admitter, the opener cannot extract the signer’s identity from it. In this paper, we present formal definitions and constructions of GS-MDO. Furthermore, we also show that GS-MDO implies identity-based encryption, and thus for designing a GS-MDO scheme, identity-based encryption is crucial. Actually, we propose a generic construction of GS-MDO from identity-based encryption and adaptive NIZK proofs, and its specific instantiation from the Groth-Sahai proof system by constructing a new (k-resilient) identity-based encryption scheme which is compatible to the Groth-Sahai proof.

Keywords

Signature Scheme Proof System Random Oracle Common Reference String Group Signature Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdalla, M., Warinschi, B.: On the Minimal Assumptions of Group Signature Schemes. In: López, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 1–13. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-Preserving Signatures and Commitments to Group Elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A New Framework for Hybrid Encryption and A New Analysis of Kurosawa-Desmedt KEM. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups for modular protocol design. Cryptology ePrint Archive, Report 2010/133 (2010), http://eprint.iacr.org/
  5. 5.
    Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practical group signatures without random oracles. Cryptology ePrint Archive, Report 2005/385 (2005), http://eprint.iacr.org/
  6. 6.
    Ateniese, G., Camenisch, J.L., Joye, M., Tsudik, G.: A Practical and Provably Secure Coalition-Resistant Group Signature Scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Bellare, M., Micciancio, D., Warinschi, B.: Foundations of Group Signatures: Formal Definitions, Simplified Requirements, and a Construction Based on General Assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Bellare, M., Shi, H., Zhang, C.: Foundations of Group Signatures: The Case of Dynamic Groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Bellare, M., Shoup, S.: Two-tier signatures from the Fiat–Shamir transform, with applications to strongly unforgeable and one-time signatures. IET Information Security 2(2), 47–63 (2008)CrossRefGoogle Scholar
  10. 10.
    Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get Shorty via Group Signatures without Encryption. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 381–398. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Boneh, D., Papakonstantinou, P.A., Rackoff, C., Vahlis, Y., Waters, B.: On the impossibility of basing identity based encryption on trapdoor permutations. In: 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 283–292 (2008)Google Scholar
  13. 13.
    Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: 11th ACM Conference on Computer and Communications Security, pp. 168–177. ACM, New York (2004)Google Scholar
  14. 14.
    Boyen, X., Waters, B.: Compact Group Signatures Without Random Oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Boyen, X., Waters, B.: Full-Domain Subgroup Hiding and Constant-Size Group Signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 1–15. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure against key dependent chosen plaintext and adaptive chosen ciphertext attacks. Cryptology ePrint Archive, Report 2008/375 (2008), http://eprint.iacr.org/
  17. 17.
    Camenisch, J., Chandran, N., Shoup, V.: A Public Key Encryption Scheme Secure against Key Dependent Chosen Plaintext and Adaptive Chosen Ciphertext Attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials from Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Camenisch, J., Michels, M.: Separability and Efficiency for Generic Group Signature Schemes (Extended Abstract). In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 413–785. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  21. 21.
    Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Computing 33(1), 167–226 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Delerablée, C., Pointcheval, D.: Dynamic Fully Anonymous Short Group Signatures. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-Insulated Public Key Cryptosystems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Furukawa, J., Imai, H.: An Efficient Group Signature Scheme from Bilinear Maps. In: Boyd, C., Nieto, J.G. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 455–467. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Ghadafi, E., Smart, N.P., Warinschi, B.: Groth–Sahai Proofs Revisited. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 177–192. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Groth, J.: Simulation-Sound NIZK Proofs for a Practical Language and Constant Size Group Signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Groth, J.: Fully Anonymous Group Signatures Without Random Oracles. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  29. 29.
    Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  30. 30.
    Heng, S.-H., Kurosawa, K.: k-Resilient Identity-Based Encryption in the Standard Model. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 67–80. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  31. 31.
    Kiayias, A., Tsiounis, Y., Yung, M.: Traceable Signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  32. 32.
    Kiayias, A., Yung, M.: Group signatures: Provable security, efficient constructions and anonymity from trapdoor-holders. Cryptology ePrint Archive, Report 2004/076 (2004), http://eprint.iacr.org/
  33. 33.
    Kiayias, A., Yung, M.: Group Signatures with Efficient Concurrent Join. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 198–214. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  34. 34.
    Kilian, J., Petrank, E.: Identity Escrow. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 169–185. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  35. 35.
    Kiltz, E.: Chosen-Ciphertext Security from Tag-Based Encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  36. 36.
    MacKenzie, P.D., Reiter, M.K., Yang, K.: Alternatives to Non-malleability: Definitions, Constructions, and Applications (Extended Abstract). In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 171–190. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  37. 37.
    Ohtake, G., Fujii, A., Hanaoka, G., Ogawa, K.: On the Theoretical Gap between Group Signatures with and without Unlinkability. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 149–166. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  38. 38.
    Okamoto, T.: Provably Secure and Practical Identification Schemes and Corresponding Signature Schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  39. 39.
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: 40th Annual Symposium on Foundations of Computer Science, pp. 543–553. IEEE Computer Society (1999)Google Scholar
  40. 40.
    Schwartz, E.J., Brumley, D., McCune, J.M.: A contractual anonymity system. In: NDSS 2010. The Internet Society (2010)Google Scholar
  41. 41.
    Shacham, H.: A Cramer-Shoup encryption scheme from the linear assumption and from progressively weaker linear variants. Cryptology ePrint Archive, Report 2007/074 (2007), http://eprint.iacr.org/
  42. 42.
    Shoup, V., Gennaro, R.: Securing Threshold Cryptosystems against Chosen Ciphertext Attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yusuke Sakai
    • 1
  • Keita Emura
    • 2
  • Goichiro Hanaoka
    • 3
  • Yutaka Kawai
    • 4
  • Takahiro Matsuda
    • 3
  • Kazumasa Omote
    • 5
  1. 1.The University of Electro-CommunicationsJapan
  2. 2.National Institute of Information and Communications TechnologyJapan
  3. 3.National Institute of Advanced Industrial Science and TechnologyJapan
  4. 4.Mitsubishi ElectricJapan
  5. 5.Japan Advanced Institute of Science and TechnologyJapan

Personalised recommendations