Fractional Step Analog Filter Design

Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 233)

Abstract

Using the fractional Laplacian operator, s α , this chapter outlines the process to design, analyze, and implement continuous-time fractional-step lowpass, highpass, and bandpass filters of order (n + α), where (α) is the fractional-step between the integer orders with value 0 < α < 1. The design of these filters is done using transfer functions in the s-domain without solving fractional-order differential equations in the time domain. The design process, stability analysis, PSPICE simulations, and physical realization of these filters are presented based on minimumphase error approximations of the operator s α . Four methods of implementation, using fractional capacitors in the Tow-Thomas biquad, Single Amplifier Biquads (SABs), Field Programmable Analog Array (FPAA) hardware and Frequency Dependent Negative Resistor (FDNR) topologies to realize decomposed transfer functions are demonstrated.

Keywords

Fractional calculus Fractional filters Analog circuits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmadi, P.: Asymmetric-slope band-pass filters. M.Sc. thesis, Dept. Electr. and Comput. Eng., University of Calgary, Canada (2011)Google Scholar
  2. 2.
    Ahmadi, P., Maundy, B., Elwakil, A.S., Belostotski, L.: High-quality factor asymmetric-slope band-pass filters: a fractional-order capacitor approach. IET Circuits Devices Syst. 6, 187–197 (2012)CrossRefGoogle Scholar
  3. 3.
    Carlson, G., Halijak, C.: Approximation of fractional capacitors of (1/s)1/n by regular Newton process. Trans. on Circuit Theory CT-11, 210–213 (1964)Google Scholar
  4. 4.
    Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, Heidelberg (2010)Google Scholar
  5. 5.
    Deliyannis, T.L., Sun, Y.Y., Fidler, J.: Continuous Time Active Filter Design. CRC Press LLC, New York (1999)Google Scholar
  6. 6.
    Elwakil, A.S.: Fractional-Order Circuits and Systems: An Emerging Interdisciplinary Research Area. IEEE Circuits Syst. Mag. 10, 40–50 (2010)CrossRefGoogle Scholar
  7. 7.
    Freeborn, T.J.: Design and implementation of fractional step filters. M.Sc. thesis, Dept. Electr. and Comput. Eng., University of Calgary, Canada (2010)Google Scholar
  8. 8.
    Freeborn, T.J., Maundy, B., Elwakil, A.S.: Towards the realization of fractional step filters. In: IEEE Int. Symp. on Circuits and Systems (ISCAS), pp. 1037–1040 (2010)Google Scholar
  9. 9.
    Freeborn, T.J., Maundy, B., Elwakil, A.S.: Field programmable analogue array implementation of fractional step filters. IET Circuits Devices Syst. 4, 514–524 (2010)CrossRefGoogle Scholar
  10. 10.
    Freeborn, T.J., Maundy, B., Elwakil, A.S.: Fractional-step Tow-Thomas biquad filters. Nonlinear Theory and its Applications, IEICE (NOLTA) 3, 357–374 (2012)CrossRefGoogle Scholar
  11. 11.
    Krishna, B., Reddy, K.: Active and passible realization of fractance device of order 1/2. Act. Passive Electron. Compon. (2008), doi:10.1155/2008/369421 Google Scholar
  12. 12.
    Maundy, B., Elwakil, A.S., Freeborn, T.J.: On the practical realization of higher-order filters with fractional stepping. Signal Process. 91, 484–491 (2011)MATHCrossRefGoogle Scholar
  13. 13.
    Maundy, B., Elwakil, A.S., Gift, S.: On a multivibrator that employs a fractional capacitor. Analog Integr. Circuits Signal Process. 62, 99–103 (2010)CrossRefGoogle Scholar
  14. 14.
    Podlubny, I., Petras, I., O’Leary, P., Dorcak, L.: Analogue realizations of fractional-order controllers. Nonlinear Dyn. 29, 281–296 (2002)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Radwan, A., Elwakil, A., Soliman, A.: First-order filters generalized to the fractional domain. J. Circuit Syst. Comp. 17, 55–66 (2008)CrossRefGoogle Scholar
  16. 16.
    Radwan, A., Elwakil, A., Soliman, A.: On the generalization of second-order filters to the fractional-order domain. J. Circuit Syst. Comp. 18, 361–286 (2009)Google Scholar
  17. 17.
    Radwan, A., Soliman, A., Elwakil, A., Sedeek, A.: On the stability of linear systems with fractional-order elements. Chaos, Solitons and Fractals 40, 2317–2328 (2009)MATHCrossRefGoogle Scholar
  18. 18.
    Westerlund, S., Ekstam, L.: Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1, 826–839 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University of CalgaryCalgaryCanada
  2. 2.University of SharjahSharjahUnited Arab Emirates

Personalised recommendations