Skip to main content

Content Based Video Retrieval Using Color Feature: An Integration Approach

  • Conference paper
Advances in Computing, Communication, and Control (ICAC3 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 361))

Abstract

As large amount of visual Information is available on web in form of images, graphics, animations and videos, so it is important in internet era to have an effective video search system. As there are number of video search engine (blinkx, Videosurf, Google, YouTube, etc.) which search for relevant videos based on user “keyword” or “term”, But very less commercial video search engine are available which search videos based on visual image/clip/video. In this paper we are recommending a system that will search for relevant video using color feature of video in response of user Query.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Choras, R.S.: Image Feature Extraction Techniques and Their Applications for CBIR and Biometrics Systems. International Journal of Biology and Biomedical Engineering 1(1), 7–16 (2007)

    Google Scholar 

  2. Yang, Y., Lovel, B.C., et al.: Content-Based Video Retrieval (CBVR) System for CCTV Surveillance Videos. In: Proceeding DICTA 2009 Proceedings of the 2009 Digital Image Computing: Techniques and Applications, pp. 183–187. IEEE Computer Society, Washington, DC (2009)

    Chapter  Google Scholar 

  3. Darrel, A.P.A.: Cooperative robust estimation using layers of support. T.R. 163, MIT Media Lab, Vision and Modeling Group (February 1991)

    Google Scholar 

  4. Bergen, J.R., Anandan, P., Hanna, K., Hingorani, R.: Hierarchical Model-Based Motion Estimation. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 237–252. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  5. Adelson, E.H., Wang, J.Y.A.: Representing moving images with layers. IEEE Transactions on Image Processing (September 1994)

    Google Scholar 

  6. Peleg, S., Irani, M.: Motion analysis for image enhancement: Resolution, occlusion and transparency. Journal of Visual Communication and Image Representation 4(4), 324–335 (1993)

    Article  Google Scholar 

  7. Black, M.: Combining intensity and motion for incremental segmentation and tracking over long image sequences. In: ECCV (1992)

    Google Scholar 

  8. Bhute, A.N., Meshram, B.B.: IVSS: Integration of Color Feature Extraction Techniques for Intelligent Video Search Systems. In: Proceeding of Int’l Conf. ICECT, Kanyakumari, India (April 2012)

    Google Scholar 

  9. Zhuang, Y., Rui, Y., Huang, T.S., Mehrotra, S.: Adaptive key frame extraction using unsupervised clustering. In: Proc. IEEE Int. Conf. on Image Proc. (1998)

    Google Scholar 

  10. Wu, J., Wei, Z., Chang, Y.: Color and Texture Feature For Content Based Image Retrieval. International Journal of Digital Content Technology and its Applications 4(3) (June 2010)

    Google Scholar 

  11. Oraintara, S., Nguyen, T.T.: Using Phase and Magnitude Information of the Complex directional Filter Bank for Texture Image Retrieval. In: Proc. IEEE Int. Conf. on Image Processing, vol. 4, pp. 61–64 (October 2007)

    Google Scholar 

  12. De Valois, R.L., De Valois, K.K.: A multi-stage color model. Vision Research 33(8), 1053–1065 (1993)

    Article  Google Scholar 

  13. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Addison-Wesley, Reading (1992)

    Google Scholar 

  14. Wang, S.: A Robust CBIR Approach Using Local Color Histograms. Technical report, Department of computer science, University of Alberta, Canada (2001)

    Google Scholar 

  15. Smith, J., Chang, S.: Tools and techniques for color image retrieval. In: Proc. of the SPIE Conference on the Storage and Retrieval for Image and Video Databases IV, San Jose, CA, USA, pp. 426–437 (1996)

    Google Scholar 

  16. Stricker, M.A., Dimai, A.: Color indexing with weak spatial constraints. In: Proc. of the SPIE Conference on the Storage and Retrieval for Image and Video Databases IV, San Diego, CA, USA, pp. 29–40 (February 1996)

    Google Scholar 

  17. Hsu, W., Chua, T.S., Pung, H.K.: An integrated color-spatial approach to content-based imageretrieval. In: Proc. of the ACM Multimedia 1995, pp. 305–313 (1995)

    Google Scholar 

  18. Stricker, M.A., Orengo, M.: Similarity of Color Images. In: Storage and Retrieval for Image and Video Databases III, pp. 381–392 (1995)

    Google Scholar 

  19. Pass, G., Zabih, R.: Histogram Refinement for Content-Based Image Retrieval. In: IEEE Workshop on Applications of Computer Vision, pp. 96–102 (1996)

    Google Scholar 

  20. Han, J., Ma, K.: Fuzzy Color Histogram and Its Use in Color Image Retrieval. IEEE Trans. on Image Processing 11, 944–952 (2002)

    Article  Google Scholar 

  21. Shanmugam, T.N., Rajendran, P.: An Enhanced Content-Based Video Retrieval System based on query clip. International Journal of Research and Reviews in Applied Sciences (December 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Daga, B. (2013). Content Based Video Retrieval Using Color Feature: An Integration Approach. In: Unnikrishnan, S., Surve, S., Bhoir, D. (eds) Advances in Computing, Communication, and Control. ICAC3 2013. Communications in Computer and Information Science, vol 361. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36321-4_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36321-4_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36320-7

  • Online ISBN: 978-3-642-36321-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics